Homework 6 Math 329: Number Theory

March 2, 2018

1 Easy

Problem 1. Find all solutions in nonnegative integers to each equation here:
(a) $3 x+4 y=12$.
(b) $3 x+4 y=23$.

Problem 2. Find all solutions in nonnegative integers to each equation here:
(a) $16 x+28 y=356$.
(b) $18 x+31 y=491$.

Problem 3. Find all integer solutions to the following linear Diophantine equations.
(a) $6 x+11 y=2$.
(b) $15 x-64 y=103$.

Problem 4. Can 1000 be expressed as the sum of two integers, one of which is divisible by 11 and the other by 17 ? If so, determine one such way.

Problem 5. In each case below, determine how many positive integers k will permit no solutions in nonnegative integers (x, y) at all:
(a) $5 x+3 y=k$.
(b) $15 x+7 y=k$.

2 Medium

Problem 6. A person cashes a cheque at the bank. By mistake the teller pays the person the number of cents as dollars and the number of dollars as cents. The person spends $\$ 3.50$ before noticing the mistake, then after counting the money finds that there is exactly double the amount of the cheque. For what amount was the cheque drawn?

Problem 7. A player scores either A or B at each turn, where A and B are unequal positive integers. He notices that his cumulative score can take any positive integer value except for those in a finite set S, where $|S|=35$ and $58 \in S$. Find A and B.

Problem 8. Prove that if a, b, c are integers and are the side lengths of a right triangle, then $60 \mid a b c$.
Problem 9. Prove that there are no positive integers a, b such that $a^{2}+b^{2}$ and $a^{2}-b^{2}$ are both squares.

3 Hard

Problem 10. Suppose that $f:\{1,2, \ldots, 1600\} \rightarrow\{1,2, \ldots, 1600\}$ satisfies $f(1)=1$ and

$$
f^{2005}(x)=x \quad \text { for } \quad x=1,2, \ldots, 1600
$$

(a) Prove that f has a fixed point different from 1.
(b) Find all $n \geq 1600$ such that any $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ satisfying the above condition has at least two fixed points.

Notes:

- In the problem we use the convention that $f^{i}(x)$ means composing f with itself i times. For example $f^{2}(x)=f(f(x)), f^{3}(x)=f(f(f(x)))$, and so on.
- We say that y is a fixed point of f if $f(y)=y$.

