Homework 7 Math 329: Number Theory

March 25, 2018

1 Easy

Problem 1. Find all primitive roots modulo 13.
Problem 2. For the following n, state how many primitive roots $\bmod n$ exist:
(a) $n=2018$
(b) $n=97$.

Problem 3. What is the order of 3 modulo 29 ?
Problem 4. Show 3 is a primitive root modulo 17^{2}.
Problem 5. Suppose $n>1$ and that p is a prime number dividing $2^{2^{n}}+1$. Prove that the order of 2 modulo p is 2^{n+1}.

2 Medium

Problem 6. Let p be prime. Prove $p \equiv 1 \bmod 8$ if and only if there exists an integer x such that $x^{4} \equiv$ $-1 \bmod p$.
Problem 7. Prove that if $n=2 p^{k}$ for a positive integer k and p an odd prime number, then n has a primitive root.

Problem 8. Let Q be a polynomial of degree n with integer coefficients. Suppose p is a prime number greater than $n+1$. Prove that

$$
Q(0)+Q(1)+\cdots+Q(p-1) \equiv 0 \bmod p
$$

Problem 9. Let p be a prime number greater than 5 . We say that a is a cubic residue modulo p if $a \not \equiv 0 \bmod p$ and there exists an integer x such that $x^{3} \equiv a \bmod p$. For example 4 is a cubic residue modulo 23 because $3^{3}=27 \equiv 4 \bmod 23$.
(a) Prove that if $p \equiv 1 \bmod 3$, then there are $(p-1) / 3$ cubic residues.
(b) Prove that if $p \equiv 2 \bmod 3$, then there are $p-1$ cubic residues.

3 Hard

Problem 10. Let $n \geq 2$ be a positive integer. Prove that the following assertions are equivalent:
(a) for all integer x coprime with n, the congruence $x^{6} \equiv 1 \bmod n$ holds;
(b) n divides 504 .

