Homework 7 Math 329: Number Theory

March 25, 2018

1 Easy

Problem 1. Find all primitive roots modulo 13.

Problem 2. For the following n, state how many primitive roots mod n exist:

- (a) n = 2018
- (b) n = 97.

Problem 3. What is the order of 3 modulo 29?

Problem 4. Show 3 is a primitive root modulo 17^2 .

Problem 5. Suppose n > 1 and that p is a prime number dividing $2^{2^n} + 1$. Prove that the order of 2 modulo p is 2^{n+1} .

2 Medium

Problem 6. Let p be prime. Prove $p \equiv 1 \mod 8$ if and only if there exists an integer x such that $x^4 \equiv -1 \mod p$.

Problem 7. Prove that if $n = 2p^k$ for a positive integer k and p an odd prime number, then n has a primitive root.

Problem 8. Let Q be a polynomial of degree n with integer coefficients. Suppose p is a prime number greater than n + 1. Prove that

$$Q(0) + Q(1) + \dots + Q(p-1) \equiv 0 \mod p.$$

Problem 9. Let p be a prime number greater than 5. We say that a is a cubic residue modulo p if $a \neq 0 \mod p$ and there exists an integer x such that $x^3 \equiv a \mod p$. For example 4 is a cubic residue modulo 23 because $3^3 = 27 \equiv 4 \mod 23$.

- (a) Prove that if $p \equiv 1 \mod 3$, then there are (p-1)/3 cubic residues.
- (b) Prove that if $p \equiv 2 \mod 3$, then there are p-1 cubic residues.

3 Hard

Problem 10. Let $n \ge 2$ be a positive integer. Prove that the following assertions are equivalent:

- (a) for all integer x coprime with n, the congruence $x^6 \equiv 1 \mod n$ holds;
- (b) n divides 504.