Homework 8 Math 329: Number Theory

April 3, 2018

1 Easy

Problem 1. For all residues x modulo 11, evaluate $x^3 \mod 11$ (for example, for mod 5, we'd have $1^3 \equiv 1 \mod 5, 2^3 \equiv 3 \mod 5, 3^3 \equiv 2 \mod 4, 4^3 \equiv 4 \mod 5$).

Problem 2. Show 2 is a primitive root modulo 11.

Problem 3. Evaluate $2^3, 2^6, \ldots, 2^{30} \mod 11$.

Problem 4. Evaluate $2^{10} \mod 121$.

Problem 5. Show that 2 is a primitive root modulo 121.

2 Medium

Problem 6. Let p be an odd prime. Prove that if a is a quadratic residue modulo p, then a is not a primitive root modulo p.

Problem 7. Let a and g be primitive roots modulo p (where p is an odd prime). Prove that ag is not a primitive root modulo p. (Hint: Write a as a power of g)

Problem 8. Suppose there is a primitive root g modulo n. Prove that there are $\phi(\phi(n))$ primitive roots modulo n. (Hint: Suppose a is a primitive root modulo n. Show that $a \equiv g^i \mod n$ for some i satisfying that $(i, \phi(n)) = 1$.)

Problem 9. Suppose n is a squarefree positive integer, i.e., there is no integer k such that $k^2|n$. Prove that the following two are equivalent:

- (a) For all integers a satisfying gcd(a, n) = 1, $a^{n-1} \equiv 1 \mod n$.
- (b) For all prime divisors p of n, we have p 1|n 1.

Hint: Consider a prime divisor p|n. Let g be a primitive root of p. Show that (a) implies p-1|n-1.

3 Hard

Problem 10. Let *p* be an odd prime. Suppose *g* is a primitive root modulo *p*. Show that there is an integer *x* such that $g^x \equiv x \mod p$.