Homework 8 Math 329: Number Theory

April 3, 2018

1 Easy

Problem 1. For all residues x modulo 11 , evaluate $x^{3} \bmod 11$ (for example, for $\bmod 5$, we'd have $1^{3} \equiv$ $\left.1 \bmod 5,2^{3} \equiv 3 \bmod 5,3^{3} \equiv 2 \bmod 4,4^{3} \equiv 4 \bmod 5\right)$.

Problem 2. Show 2 is a primitive root modulo 11.
Problem 3. Evaluate $2^{3}, 2^{6}, \ldots, 2^{30} \bmod 11$.
Problem 4. Evaluate $2^{10} \bmod 121$.
Problem 5. Show that 2 is a primitive root modulo 121.

2 Medium

Problem 6. Let p be an odd prime. Prove that if a is a quadratic residue modulo p, then a is not a primitive root modulo p.
Problem 7. Let a and g be primitive roots modulo p (where p is an odd prime). Prove that $a g$ is not a primitive root modulo p. (Hint: Write a as a power of g)

Problem 8. Suppose there is a primitive root g modulo n. Prove that there are $\phi(\phi(n))$ primitive roots modulo n. (Hint: Suppose a is a primitive root modulo n. Show that $a \equiv g^{i} \bmod n$ for some i satisfying that $(i, \phi(n))=1$.)
Problem 9. Suppose n is a squarefree positive integer, i.e., there is no integer k such that $k^{2} \mid n$. Prove that the following two are equivalent:
(a) For all integers a satisfying $\operatorname{gcd}(a, n)=1, a^{n-1} \equiv 1 \bmod n$.
(b) For all prime divisors p of n, we have $p-1 \mid n-1$.

Hint: Consider a prime divisor $p \mid n$. Let g be a primitive root of p. Show that (a) implies $p-1 \mid n-1$.

3 Hard

Problem 10. Let p be an odd prime. Suppose g is a primitive root modulo p. Show that there is an integer x such that $g^{x} \equiv x \bmod p$.

