Homework 9 Math 329: Number Theory

April 18, 2018

1 Easy

Problem 1. Compute $\left(\frac{10}{19}\right)$ using Gauss' lemma.
Problem 2. Compute $\left(\frac{7}{11}\right)$ using Eisenstein's lemma.
Problem 3. Evaluate ($\frac{2008}{257}$).
Problem 4. Evaluate ($\frac{503}{773}$) and ($\frac{501}{773}$).
Problem 5. Using formulas for $\left(\frac{2}{p}\right)$ and $\left(\frac{-1}{p}\right)$, find a general formula for $\left(\frac{-2}{p}\right)$.

2 Medium

Problem 6. Let $g(p)$ be the least quadratic non-residue modulo p (where p is an odd prime). Prove that $g(p)$ is prime.

Problem 7. Prove that if p is an odd prime, then

$$
\left(\frac{3}{p}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1 \bmod 12 \\ -1 & \text { if } p \equiv \pm 5 \bmod 12\end{cases}
$$

Problem 8. Let $g(p)$ be the least quadratic non-residue modulo p (where p is an odd prime). For example, for $p=7$, we have $g(7)=3$ because 1 and 2 are quadratic residues, while 3 is not a quadratic residue, so 3 is the least non-residue. Prove that

$$
g(p)=5 \Leftrightarrow p \equiv \pm 23, \pm 47 \bmod 120 .
$$

Problem 9. Let $q_{1}=2$. Then for $n \geq 2$. define q_{n} to be the largest prime factor of $q_{1} q_{2} \cdots q_{n-1}+1$. For example, the first seven elements of the sequence are $2,3,7,43,139,50207,340999$. Prove that 5 is not on the sequence.

3 Hard

Problem 10. Let $g(p)$ be the least quadratic non-residue modulo p (where p is an odd prime). Prove that $g(p)<\sqrt{p}+1$.

