
1 Divisibility

Definition 1. We say an integer b is divisible by a nonzero integer a (denoted a|b - read as “a divides b”)
if there is an integer n such that b = an. If no such n exists, we say b is not divisible by a (denoted a - b -
read as “a does not divide b”). If a|b we say a is a factor or divisor of b and b is a multiple of a. A positive
divisor of b that is not b itself is called a proper divisor of b.

Properties of Divisibility

• If a|b and a|c then for any integers m and n, a|(mb+ nc).

• If n 6= 0, an|bn if and only if a|b.

• If a|b and b|c then a|c.

• If a|b and b|a then a = ±b.

The first property listed above is an incredibly useful tool in divisibility problems. We’ll prove that it
holds below.

Proposition 1. If a|b and a|c then for any integers m and n, a|(mb+ nc).

Proof. Since a|b, we know b = ax for some integer x. Likewise, since a|c, we know c = ay for some integer
y. Then mb+ nc = m(ax) + n(ay) = a(mx+ ny), so a|(mb+ nc) as desired.

�

Divisibility Rules

• n is divisible by 2 if its last digit is even.

• n is divisible by 3 if the sum of its digits is a multiple of 3.

• n is divisible by 4 if its last two digits form a number that is a multiple of 4.

• n is divisible by 5 if its last digit is a 0 or a 5.

• n is divisible by 6 if it is divisible by both 2 and 3 (use the above tests to check).

• n is divisible by 8 if its last three digits form a number that is a multiple of 8.

• n is divisible by 9 if the sum of its digits is a multiple of 9.

• n is divisible by 10 if its last digit is 0.

• n is divisible by 11 if the alternating sum of its digits is a multiple of 11.

Theorem 1 (Division Algorithm.). Given any integers a and b, with b 6= 0, there exist unique integers q
and r such that a = qb+ r, 0 ≤ r < b.

Proof. For the sake of saving space, we will assume that a and b are positive. This proof can be extended in
a straightforward way to deal with other possible cases.

Consider the set of all integers of the form a − bx such that x is an integer and a − bx ≥ 0. Notice
this set is non-empty; in particular a is in this set. By the well-ordering principle (which states that every
non-empty set of positive integers contains a least element), we know there is some least element in this set
(let’s call this element r and the x used to produce it q). Thus a = qb+ r.

We now need to prove that 0 ≤ r < b. Since we only allow non-negative values of a − bx in our set,
r must be greater than or equal to zero. Now suppose by way of contradiction that b ≤ r. Then since
r < r+ b (recall b is positive), we know b ≤ r < r+ b or (subtracting b from each term) 0 ≤ r− b < b. Since
r − b = a− b(q + 1), this contradicts the minimality of r. Thus it must be the case that r < b as required.

We have now established the existence of q and r such that a = qb + r with 0 ≤ r < b. Next we will
demonstrate the uniqueness of these values.
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Suppose by way of contradiction that q and r are not unique. Then there exist non-equal pairs q1, r1
and q2, r2 that satisfy the given form. That is, a = q1b+ r1 = q2b+ r2. Without loss of generality, suppose
q1 > q2. Subtracting, we see that 0 = b(q1 − q2) + (r1 − r2). Since q1 > q2, q1 − q2 ≥ 1. This implies
r2 − r1 = b(q1 − q2) ≥ b · 1 = b. But this implies that r2 ≥ r1 + b ≥ b which contradicts q2, r2 being a valid
pair satisfying the given form. Thus the assumption that the pairs were different must have been faulty, so
q and r are unique.

�

Tips on Divisibility problems

• When in doubt, go back to the division algorithm! Often it is easier to see what is going on if you
work with something in the form b = an rather than a|b.

• The property “if a|b and a|c then for any integers m and n, a|(mb + nc)” will show up a lot. Get
comfortable with applying it.

• Remember that what is true of one side of the equation must be true of the other side as well. If one
side is divisible by 2, the other side must be as well. If one side is a perfect square, the other side must
be as well.

• Looking at remainders can be helpful! For example, it turns out the only possible remainders a perfect
square can have upon division by 4 are 0 and 1. Using this trick can help in a lot of different problems.

• Keep in mind that the division algorithm tells us that there are only so many remainders upon division
by a particular number! In particular, if you divide by b, there are only b possible remainders.

2 Euclidean Algorithm, GCD and LCM

Definition 2 (Greatest Common Divisor.). For integers a and b and positive integer d, if d|a and d|b we
call d a common divisor of a and b. Unless a = b = 0, they have a greatest common divisor which we denote
gcd(a, b). If gcd(a, b) = 1 we say that a and b are relatively prime. The concept of relative primeness is
separate from the notion of prime numbers and is central to much of number theory.

Definition 3 (Least Common Multiple.). For nonzero integers a and b and positive integer m, if a|m and
b|m we call m a common multiple of a and b. The least common multiple we denote by lcm(a, b).

Euclidean Algorithm. The Euclidean Algorithm is a method for computing gcd(a, b) (suppose for simplic-
ity that a ≥ b... since gcd(a, b) = gcd(b, a), we do not lose generality). Note that by the Division Algorithm,
we know we can write

a = q0b+ r1 0 < r1 < b

b = q1r1 + r2 0 < r2 < r1

r1 = q2r2 + r3 0 < r3 < r2

r2 = q3r3 + r4 0 < r4 < r3

...

rn−2 = qn−1rn−1 + rn 0 < rn < rn−1

rn−1 = qnrn + 0.

The process terminates because r1 < b, so r1 ≤ b − 1. Then r2 < r1, so r2 ≤ b − 2, and so on. Since the
numbers are decreasing and they are positive integers, at some point the process can’t continue (i.e., you
reach 0).

Theorem 2. The number rn outputted by the Euclidean algorithm is the greatest common divisor of a and
b.
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Proof. Let d = gcd(a, b). Recall that if d|a and d|b then d|(a − bq1), so d|r1. But then d|b and d|r1, so
d|b − r1q2 = r2. The process continues, so d|rn. Now, from the equation rn−1 = qnrn we see that rn|rn−1.
Then rn|(rn + qn−1rn−1 = rn−2. But then rn|(rn−1 + qn−2rn−2 = rn−3, and so on. Therefore rn|a and rn|b.
Therefore rn is a common divisor of a, b, which implies that rn ≤ d. But since d|rn and d > 0, we have that
d ≤ rn. This implies that rn = d, which is what we wanted to prove.

�

Example
Find gcd(5403, 4731).

We use the Division Algorithm to write

5403 = 1 · 4731 + 672

4731 = 7 · 672 + 27

672 = 24 · 27 + 24

27 = 1 · 24 + 3

24 = 8 · 3 + 0

Thus we have gcd(5403, 4731) = gcd(4731, 672) = · · · = gcd(3, 0) = 3.

Theorem 3 (Bezout’s Theorem.). For any integers a, b (not both zero), there exist integers x and y such
that gcd(a, b) = ax + by (that is, the gcd of a and b can be written as a linear combination of a and b). In
fact, gcd(a, b) is the smallest positive integer that can be expressed in this form.

Proof. Let g = gcd(a, b) and let ` be the smallest positive integer that can be written as a linear combination
ax+ by for some integers x, y.

g ≤ ` We know that since g|a and g|b, g|ax + by. This implies g|`, so we know g must be less than or

equal to `.

g ≥ ` We will show ` is a common divisor of a and b. Suppose by way of contradiction that ` does not

divide both a and b. Say without loss of generality that ` - a. By Division Algorithm we know

a = q`+ r 0 < r < `

But then notice
r = a− q` = a− (ax+ by)q = a(1− qx) + b(qy)

1− qx and qy are integers, so this is a linear combination of a and b. Since r must be positive but less than
`, this contradicts the minimality of `. Thus our assumption must be flawed, and it must be the case that `
is a common divisor of a and b. Since g is by definition the greatest common div isor of a and b, g ≥ `.

Since g ≥ ` and g ≤ `, we can conclude g = `. Thus, the greatest common divisor of a and b is the
smallest positive integer that can be written as a linear combination of a and b.

�

Extended Euclidean Algorithm. While it’s nice to know there exist x and y such that gcd(a, b) =
ax+by, it’s not necessarily easily apparent what such x and y might be. Luckily, we have a method for finding
values of x and y such that gcd(a, b) = ax + by. We call this process the Extended Euclidean Algorithm.
This process gives a different proof of Bezout’s identity.

Example
Find x, y such that 5403x+ 4731y = 3.
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For neatness, let a = 5403, b = 4731. There are two ways to do this process. We can go from the “top”
down or we can start at the “bottom” and build up. Notice that the equations we are using are those we
found via the Euclidean Algorithm to determine gcd(5403, 4731). We’ll do the top down version first:

5403 = 1 · a+ 0 · b
4731 = 0 · a+ 1 · b
672 = 5403− 4731

= 1 · a− 1 · b
27 = 4731− 7 · 672

= b− 7(1 · a− 1 · b)
= 8 · b− 7 · a

24 = 672− 24 · 27

= (1 · a− 1 · b)− 24(8 · b− 7 · a)

= 169 · a− 193 · b
3 = 27− 24

= (8 · b− 7 · a)− (169 · a− 193 · b)
= 201 · b− 176 · a
= 201 · 4731− 176 · 5403

Or if you prefer to start from the bottom:

3 = 27− 24

= 27− (672− 24 · 27)

= 25 · 27− 672

= 25(4731− 7 · 672)− 672

= 25 · 4731− 176 · 672

= 25 · 4731− 176(5403− 4731)

= 201 · 4731− 176 · 5403

Which method you use here is a matter of personal preference; use whichever makes the most sense to
you. Notice that the results we get from the two methods are identical, namely 3 = 201 · 4731 − 176 · 5403
so x = −176 and y = 201.

While this is one solution, it turns out there are actually infinitely many x, y pairs that satisfy 3 =
5403x+ 4731y. We’ll see more about that later.

Some Useful Facts about GCD

• gcd(ca, cb) = c · gcd(a, b)

• If d|a and d|b with d > 0, then gcd(ad ,
b
d ) = 1

d gcd(a, b).

• If gcd(a, c) = gcd(b, c) = 1 then gcd(ab, c) = 1.

• If gcd(b, c) = 1, then gcd(a, b) · gcd(a, c) = gcd(a, bc).

3 Primes

Definition 4 (Prime Numbers.). A positive integer p > 1 is prime if its only positive divisors are 1 and p.
A positive integer n > 1 is composite if it is not prime. Note that 1 is neither prime nor composite.

One powerful technique in number theory is prime factorization, writing an integer as the product of
powers of primes. It turns out that all positive integers greater than 1 have a unique prime factorization.
We’ll prove this below, but first we need a lemma.

4



Lemma 1. If p is prime and p|ab, then p|a or p|b.

Proof. Suppose p|ab. If p|a, we’re done. Suppose p 6 |a. Then (p, a) = 1, so by Bezout’s identity there exist
integers m and n such that

am+ pn = 1.

Now multiply by b and get abm + pnb = b. Since p|ab and p|p, then p|abm + pnb = b. Which is what we
wanted to prove.

�

Proposition 2. If p is prime and p|a1a2a3 · · · an, then p divides one of the ai.

Proof. We proceed by induction on n.
Base Case: (n = 2) We use the Lemma we just proved. I.H.: Assume if p is prime and p|a1a2a3 · · · an,

then p divides one of the ai.
Inductive Step: Suppose p is prime and p|a1a2a3 · · · anan+1. We let a = a1a2 · · · an and b = an+1. By

our base case, we know p|a or p|b. If p|b, then p|an+1 and our claim holds. Otherwise, p|a or p|a1a2a3 · · · an
so by our induction hypothesis, p divides one of the ai and our claim holds.

Thus, by the principle of mathematical induction, we have proven our claim.

�

Theorem 4 (Fundamental Theorem of Arithmetic.). All positive integers n > 1 can be written uniquely
(up to the ordering of primes) as a product of prime powers, n = p1

α1p2
α2 · · · pkαk , αi > 0, k > 0, pi prime.

Proof. Let’s prove the existence by using strong induction. We know 2, 3, 4, 5, 6 can be factored into primes
as 2, 3, 22, 5, 2 ·3, respectively. Those are our base cases. Now assume that all numbers j satisfying 2 ≤ j ≤ k
for some k ≥ 6 can be factored. If k+ 1 is prime, then k+ 1 is already factored. If k+ 1 is not prime, then it
must be composite, so there exist a, b satisfying k+ 1 = ab with 2 ≤ a ≤ b ≤ k. By the induction hypothesis,
a and b can be factored into primes. But then the product of their factorizations is a factorization of k + 1
into primes. Therefore, we’ve shown the existence of a factorization by strong induction.

Now we prove uniqueness. Suppose by way of contradiction that there exists an integer with two prime
factorizations. Let M be the smallest such integer. Then

M = pα1
1 pα2

2 · · · pαm
m = qβ1

1 qβ2

2 · · · qβn
n

where the pi and qi are primes, not all the same. By the previous proposition, since p1|M = qβ1

1 qβ2

2 · · · qβn
n ,

then p1|qj for some j. However, since qj and p1 are prime, this implies qj = p1. Thus we can divide out:

pα1−1
1 pα2

2 pα3
3 · · · pαm

m =
M

p1
= qβ1

1 qβ2

2 · · · q
βj−1

j−1 q
βj−1
j q

βj+1

j+1 · · · q
βn
n .

Note that this means that M
p1

has two different prime factorizations. Also since p1 > 1, M
p1

is less than M .
But this contradicts M being smallest integer with two prime factorizations. Thus our assumption that such
an M existed must have been flawed, and we know that all positive integers n > 1 can be written uniquely
as a product of prime powers as desired.

�

Proposition 3. There are infinitely many primes.

Proof. Suppose by way of contradiction that there are finitely many primes. Then we can list them out:
p1, p2, . . . , pk.

Consider the integer n = p1p2 · · · pk + 1. This is not divisible by any of the primes in our list (it leaves a
remainder of 1 upon division by any of them), but by the fundamental theorem of arithmetic, n must have
a prime factorization.

Then either n itself is prime and was missing from our list, or there is some smaller prime that divides
n that was not in our list. This contradicts our assumption that we are able to list out all existing primes,
so it must be the case that there are an infinite number of primes.
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This proof can be made constructive in the following fashion. Let q1 = 2. Now, let qn be a prime divisor
of 1 + q1q2 · · · qn−1. By the proof above, qn is a new prime for each n, so you get an infinite sequence of
primes. Let’s play around with this sequence. q2|3 so q2 = 3, q3|2 · 3 + 1 = 7, so q3 = 7. Similarly q4 = 43.
But then q5|2 · 3 · 7 · 43 + 1 = 13 · 139. Therefore q5 has two options, it can be 5 or it can be 139. To make
the process deterministic, we can consider the following two sequences (called Euclid-Mullin sequences):

1. Let qn be the least prime factor of 1 + q1q2 . . . qn−1. Then we have the first elements of the sequence
are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739.

2. Let qn be the greatest prime factor of 1+q1q2 . . . qn−1. Then we have the first elements of the sequence
are 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129.

The first sequence is conjectured to capture all the primes! It is an open question.
The second sequence has been proven (by Andrew Booker in 2012) to skip infinitely many primes. Below

we show why it skips the prime 5.
Suppose qn = 5 for some n. Since 5 is the greatest prime factor of 1 + q1q2 · · · qn−1, then

A = 1 + q1q2 · · · qn−1 = 2a · 3b · 5c.

Since q1 = 2, q2 = 3, then A is not even and A is not a multiple of 3, therefore A = 5c. The remainder of 5
when divided by 4 is 1, so the remainder of 5c when divided by 4 is also 1. On the other hand, q1 = 2 and
qi is odd for i = 2, 3, . . . , n− 1, so q1q2 · · · qn−1 is even but not a multiple of 4. This implies A 6= 4k + 1 for
any k. This contradicts that A has remainder 1 when divided by 4.

Primes and GCD

We already know one way to find the greatest common divisor of two numbers. Now let’s look at
an alternative method based on the prime factorizations of the numbers. As an example, let’s consider
38808 = 23 · 32 · 72 · 11 and 36855 = 34 · 5 · 7 · 13.

First let’s compute gcd(38808, 36855) using the Euclidean Algorithm:

38808 = 1 · 36855 + 1953

36855 = 18 · 1953 + 1701

1953 = 1 · 1701 + 252

1701 = 6 · 252 + 189

252 = 1 · 189 + 63

189 = 3 · 63 + 0

Thus we have gcd(38808, 36855) = gcd(36855, 1953) = · · · = gcd(189, 63) = 63.

Notice that the prime factorization of 63 is 32 ·7. What relation does this have to the prime factorizations
of the original numbers? It seems that the exponents on the primes are the minimum of the exponents in
the original prime factorization.

Proposition 4. Given two integers a and b with prime factorizations a = pα1
1 · p

α2
2 · · · p

αk

k and b = pβ1

1 ·
pβ2

2 · · · p
βk

k with αi, βi ≥ 0, then

gcd(a, b) = p
min(α1,β1)
1 · pmin(α2,β2)

2 · · · pmin(αk,βk)
k .

Proof. Let g = p
min(α1,β1)
1 · pmin(α2,β2)

2 · · · pmin(αk,βk)
k . Clearly p

min(αi,βi)
i divides both pαi

i and pβi

i so g divides
a and b. Thus, g is a common divisor of a and b.

Notice any integer greater than g must have some prime pj such that the exponent on pj (say γj) is
greater than min(αj , βj). Suppose without loss of generality that for pj , min(αj , βj) = αj . Then the given
integer cannot divide a since p

γj
j does not divide p

αj

j , and thus does not divide a. This concludes our proof.
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Tips for Prime problems

• Prime factorization is a very common technique. Get comfortable with it!

• Parity arguments in particular (even vs. odd) are very useful! Keep them in mind; they’ll pop up a
lot (and not just in problems about primes).

• Though this sounds obvious, don’t forget that a prime p’s only divisors are 1 and itself. Often this
comes in handy.

• Take advantage of numbers that appear in the problem. For example, if you’re given 5 numbers and
told to find all n such that all of them are prime, check what the remainder is for each number when
divided by 5. (This will be a recurring pattern... you’ll get this same advice for mods and bases.) This
won’t always help, but it’s a good place to start.

4 Modular Arithmetic

Definition 5. We say that a is congruent to b modulo m (denoted a ≡ b (mod m)) if m | (a− b) (this is
often shortened to simply “b mod m”). We call m the modulus. Note that this is the same as saying that a
and b leave the same remainder upon division by m.

Most of the time when we use mods to deal with a value a, we’ll look at what number a is congruent to
mod m between 0 and m− 1 (i.e. the remainder of a upon division by m). We call this value the residue of
a mod m. We will also often look at the value a is congruent to mod m between −m+ 1 and 0.

Properties of Mods:

• If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m)

• If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m) then a1 + b1 ≡ a2 + b2 (mod m).

• If a ≡ b (mod m) then ca ≡ cb (mod m).

• If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m) then a1b1 ≡ a2b2 (mod m).

• If a ≡ b (mod m) then ak ≡ bk (mod m).

• If ca ≡ cb (mod m) then a ≡ b
(

mod
m

gcd(m, c)

)
Theorem 5 (Cancellation Theorem). If ax ≡ ay (mod m) and gcd(a,m) = 1, then x ≡ y (mod m).

Proof. Suppose ax ≡ ay (mod m). This means m|ax − ay or m|a(x − y). Since gcd(m, a) = 1, we know it
must be the case that m|(x− y) and thus x ≡ y (mod m).

�

Using Modular Arithmetic we can figure out what day of the week it will be in 10 days, 100 days, 1
million days and even 1010

6

days. Today is Monday. In 10 days, it will be Thursday because 10 ≡ 3 mod 7
and Monday plus 3 days is Thursday. Since 100 ≡ 2 mod 7, then it will be Wednesday in 100 days. Since
106 ≡ 1 mod 7, then it will be Tuesday in 1 million days. To calculate 1010

6

we need a bit more work. The
first idea is that 106 ≡ 1 mod 7. Since 106 ≡ 4 mod 6, then 106 = 6k + 4 for some integer k. But then

1010
6

= 106k+4 =
(
106
)k · 104 ≡ 1k · 104 ≡ 104 ≡ 4 mod 7.

Therefore it will be Friday in 1010
6

days (in the very hypothetical situation that the Sun hasn’t exploded by
then).
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We can also use modular arithmetic to show that the sum of the divisors of n, s(n) is congruent to n
modulo 9. Indeed, if n = 10kaj + 10k−1ak−1 + . . . 10a1 + a0, then since 10j ≡ 1j ≡ 1 mod 9, then

n = 10kak + 10k−1ak−1 + . . .+ 10a1 + a0 ≡ ak + ak−1 + . . .+ a1 + a0 = s(n) mod 9.

Just as when working in the real numbers one of our priorities is to solve linear algebraic equations for a
variable, we’re also interested in solving similar equations working in mods. To do so, we need to introduce
the concept of multiplicative inverses.

If we were asked to solve the equation 2x = 6, we would probably try to get rid of the 2 in front of the
x. We can accomplish this by multiplying by 1

2 , which is the multiplicative inverse of 2 (i.e. the number
that, when multiplied with 2, results in 1). Though we may not have a concept of 1

2 in mods, we can still
sometimes find multiplicative inverses for numbers.

Multiplicative Inverses

• Which numbers have multiplicative inverses in mod 3? mod 5? mod 11? mod p for prime p?

• Which numbers have multiplicative inverses in mod 4? mod 6? mod 10? mod 15? Do you notice
anything these numbers have in common? (Hint: Look at the numbers with multiplicative inverses in
relation to the mod in question)

• If a has a multiplicative inverse x in mod m, we write ax ≡ 1 (mod m). Rewrite this as an equation
(not a congruence) in the style of the division algorithm.

• Rearrange your equation from the previous part so that the constant (i.e. the remainder) is on one side
and everything else is on the other side. Does this equation look familiar? What do we know about
equations of this form?

• Conjecture when a number a has a multiplicative inverse in mod m. Use facts we have learned about
equations of the particular form to prove your conjecture.

Lemma 2. Let a and b be relatively prime positive integers. Then a, 2a, 3a, . . . , (b−1)a consists of different
nonzero remainders modulo b.

Proof. Suppose that ia ≡ ja mod b. Since (a, b) = 1, then i ≡ j mod b. But the numbers a, 2a, . . . , (b− 1)a
are all of the form ia with 1 ≤ i ≤ b − 1. Therefore, if i ≡ j mod b, then i = j. Now suppose that
ia ≡ 0 mod p. Then i ≡ 0 mod p. This is impossible when 1 ≤ i ≤ b − 1. Therefore none of the numbers
have remainder 0.

�

Reminder. When you’re working with a problem and not sure what mod to use, look at what numbers
appear in the problem. Often using one of these numbers or something close will be helpful.

5 Euler’s Totient Function

Definition 6. For a positive integer n, we define φ(n) to be the number of positive integers that are ≤ n
that are relatively prime to n. This function is called Euler’s φ function or Euler’s totient function.

For a prime p, it is easy to calculate φ(p). Indeed, all positive integers less than p are relatively prime to
p, so φ(p) = p− 1.

For a prime power pα, it’s also relatively easy to calculate. Consider all numbers between 1 and pα

(including both endpoints). The only numbers that are not relatively prime to pα are the multiples of p.
But the number of multiples of p in that range is pα/p = pα−1. Therefore

φ(pα) = pα − pα−1 = pα−1(p− 1) = pα
(

1− 1

p

)
.
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For the product of two primes pq we have that if you’re not relatively prime to pq, you must have be a
multiple of p or a multiple of q. Using inclusion-exclusion we get

φ(pq) = pq − pq

p
− pq

q
+
pq

pq
= pq − p− q + 1 = (p− 1)(q − 1) = pq

(
1− 1

p

)(
1− 1

q

)
.

Let’s find a general formula for φ(n) when n = pα1
1 pα2

2 · · · pαr
r . Consider all numbers up to n. Then to

not be relatively prime to n, you must be either a multiple of p1 or p2 or p3 or . . . pr. By inclusion-exclusion
we get

φ(n) = n− n

p1
− n

p2
− · · · − n

pr
+

n

p1p2
+

n

p1p3
+ · · ·+ n

pr−1pr
− n

p1p2p3
+ · · ·+ (−1)r

n

p1p2 · · · pr

= n

(
1− 1

p1
− 1

p2
− · · · − 1

pr
+

1

p1p2
+

1

p1p3
+ · · ·+ 1

pr−1pr
− 1

p1p2p3
+ · · ·+ (−1)r

1

p1p2 · · · pr

)
.

where we consider all products of two primes pipj , all products of three primes, of four primes, and so on. But

since every k-fold product appears exactly once to the sign (−1)k, that is
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pr

)
.

Therefore

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
= pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1) · · · pαr−1

r (pr − 1). (1)

A more compact way of writing the formula is

φ(n) = n
∏
p|n

(
1− 1

p

)
.

Theorem 6. Let a and b be relatively prime, then phi(ab) = φ(a)φ(b)

Proof. We arrange the numbers 1 to ab in an a× b array:

1 2 · · · a
a+ 1 a+ 2 · · · 2a

...
...

...
...

a(b− 1) + 1 a(b− 1) + 2 · · · ab

By definition, there are φ(ab) numbers relatively prime to ab in this array.
Next, note that there are φ(a) columns containing numbers relatively prime to a. Why? We know there

are φ(a) numbers in the first row that are relatively prime to a (from the definition of the totient function).
If gcd(a, c) = 1, we know that gcd(ak+c, a) = 1 for any integer k since gcd(ak+c, a) = gcd(a, ak+c−ak) =
gcd(a, c) by the Euclidean algorithm.

Next, note that in any given column, each possible remainder upon division by b is represented exactly
once. Why? Any two elements in a given column are of the form ak1 + c and ak2 + c for some integers
0 ≤ k1, k2 < b and 0 ≤ c < a. Then if ak1 + c ≡ ak2 + c (mod b), we know ak1 ≡ ak2 (mod b) and thus
since gcd(a, b) = 1, k1 ≡ k2 (mod b) by cancellation theorem. However, since all the k are distinct mod
b, this means the ak + c must be distinct as well. By the same logic as with a (that is gcd(b, c) = 1 then
gcd(bk + c, b) = 1), this means any given column contains exactly φ(b) numbers relatively prime to b.

Notice that the numbers relatively prime to ab are exactly those that are relatively prime to both a and
b. Since we know in each column there are φ(b) numbers relatively prime to b, and of those columns, φ(a) of
them are relatively prime to a, this implies there are φ(a)φ(b) numbers in the table relatively prime to ab.
But we already know this is counted by φ(ab), so we have φ(ab) = φ(a)φ(b) as desired.

�
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Remark 7. One can also prove Theorem 6 using the formula for φ(n) in (1). Alternatively, one can prove
the formula for φ(n) using this theorem, because given n = pα1

1 pα2
2 · · · pαr

r . Then repeatedly applying that
φ(ab) = φ(a)φ(b) for (a, b) = 1 yields

φ(n) = φ(pα1
1 · p

α2
2 · · · p

αr−1

r−1 )φ(pαr
r )

= φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαr
r )

= (pα1
1 − p

α1−1
1 )(pα2

2 − p
α2−1
2 ) · · · (pαr

r − pαr−1
r )

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)

Example Consider n = 693 = 32 · 7 · 11. By our formula,

φ(693) = 693

(
1− 1

3

)(
1− 1

7

)(
1− 1

11

)
= 693− 693

3
− 693

7
− 693

11
+

693

3 · 7
+

693

3 · 11
+

693

7 · 11
− 693

3 · 7 · 11

Does this make sense? How many multiples of 3 are there that are less than or equal to 693? 231; multiples
of 7? 99; multiples of 11? 63; multiples of 21? 33; multiples of 33? 21; multiples of 77? 9; multiples of 231?
3. So by the principle of inclusion-exclusion

φ(693) = 693− 231− 99− 63 + 33 + 21 + 9− 3 = 360

which matches with

φ(693) = 693 · 2

3
· 6

7
· 10

11
= 360.

Example Find the sum of all positive rational numbers that are less than 10 and that have denominator
30 when in lowest terms.

In order for a fraction to have denominator 30 when in lowest terms, the numerator must be relatively
prime to 30. We know that φ(30) = 30 · 12 ·

2
3 ·

4
5 = 8, so there are 8 numbers relatively prime to 30 that are

less than 30.
Note that if 1 ≤ k < n is relatively prime to n, so is n − k. This is because any common divisor d of n

and k must divide n− k, and similarly any common divisor d of n and n− k must divide n− (n− k) = k.
This means numbers relatively prime to 30 come in pairs of the form (m, 30−m). This is convenient since

m

30
+

30−m
30

=
30

30
= 1.

This tells us the sum of the fractions less than 1 is 4.
Note that if m

30 is in lowest terms, then so is m+30k
30 for all integers 30. Thus we can add 1 to each of our

fractions between 0 and 1 to get another fraction meeting our criteria between 1 and 2. We can add 1 to
each of these to get fractions meeting our criteria between 2 and 3. This pattern continues. Thus, we have
ten 4’s contributed (one for 0-1, one for 1-2, and so on till 9-10) and each number 1 to 9 gets contributed
eight times (since there are 8 fractions between 0 and 1, 8 between 1 and 2, etc.) Thus our final result is

4 · 10 + 8 · (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 400.

�
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6 Fermat, Euler, Wilson

Theorem 8 (Fermat’s Little Theorem). For p prime, ap ≡ a (mod p). Alternatively, if gcd(a, p) = 1, ap−1 ≡
1 (mod p).

Proof. We’ll look at two cases: the zero case and the non-zero case. If a ≡ 0 (mod p), then clearly 0p ≡ 0
(mod p) and we’re done.
Otherwise, a is non-zero, which means gcd(a, p) = 1. Recall that the cancellation theorem tells us that if
gcd(a, p) = 1, then ax ≡ ay (mod p) implies x ≡ y (mod p). This tells us that a, 2a, 3a, . . . , (p − 1)a must
be distinct mod p. This tells us that

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p)

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Since (p − 1)! is relatively prime to p, we apply cancellation theorem to yield ap−1 ≡ 1 (mod p) or ap ≡ a
(mod p) as desired.

Alternative Proof. Let’s prove it by induction. It’s clearly true for a = 0 and a = 1 since 0p = 0 and
1p = 1. Now, suppose that it’s true for some a. Then we want to prove it for (a + 1)p. By the Binomial
Theorem we have

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + . . .+

(
p

p− 1

)
a+ 1.

Consider i such that 1 ≤ i ≤ p − 1. We have
(
p
i

)
= p!

i!(p−1)! . Since 1 ≤ i ≤ p − 1, then i! does not divide

p. Since 1 ≤ i ≤ p − 1, then 1 ≤ (p − i) ≤ p − 1, so (p − i)! does not divide p. But
(
p
i

)
is an integer with

a p factor in the numerator and no p factor in the denominator. Therefore p|
(
p
i

)
and hence

(
p
i

)
≡ 0 mod p.

Using the induction hypothesis, we have ap ≡ a mod p. Therefore

(a+ 1)p ≡ ap + 1 ≡ a+ 1 mod p.

The proof is complete.

�

The contrapositive here gives a novel way to check the primeness of a number n. That is, if an 6≡ a
(mod n), we know n is not prime. So given some large n, is 2n 6≡ 2 (mod n) then n is not prime.

Example. 215 ≡ 256 · 128 ≡ 1 · 8 ≡ 8 (mod 15) so 15 is not prime.
Note. If 2n ≡ 2 (mod n), this doesn’t guarantee n is prime (but it “probably” is). Numbers that satisfy

this property are called “industrial grade primes.”

Well that was nice. But the result only helps with prime modulae. Can we generalize this somehow?

Theorem 9 (Euler’s Theorem). If gcd(a,m) = 1 then aφ(m) ≡ 1 (mod m), where φ(m) is the Totient
Function.

Remark 10. In the case that m is prime, this is simply Fermat’s Little Theorem.

Proof. Let Rm = {r1, r2, . . . , rk} be the set of numbers relatively prime to m. This means φ(m) = k. Since
the ri are distinct, the ari must be distinct mod m (easy to show by contrapositive). Since (a,m) = 1 and
(ri,m) = 1, (ari,m) = 1. By Euclidean Alg, this means

1 = gcd(ari,m) = gcd(m, ari (mod m))

So we have just permuted the elements of Rm. That is {ar1, ar2, . . . , ark} ≡ {r1, . . . , rk} (mod m). So we
can take the product of these sets to yield

(ar1)(ar2) · · · (ark) ≡ r1r2 · · · rk (mod m)

akr1r2 · · · rk ≡ r1r2 · · · rk (mod m)

ak ≡ 1 (mod m)

aφ(m) ≡ 1 (mod m)

and we’re done.

11
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Theorem 11 (Wilson’s Theorem). For p prime, (p− 1)! ≡ −1 (mod p).

Proof. Let p be prime. Note that this means 1, 2, . . . , p − 1 have multiplicative inverses in mod p. So
everything will cancel except the numbers that are their own multiplicative inverses. These numbers are 1
and p− 1 (recall CE4 from Week 1 Day 4). Since p− 1 ≡ −1 (mod p), we have

(p− 1)! ≡ 1 · (p− 1) ≡ −1 (mod p)

as desired.
Alternative Proof: Consider the number of permutations on A = {1, 2, . . . , p}. On the one hand, the

number is p!. On the other hand, we can think of a permutation on A as a function f : A → A that is
onto. The number of functions g : A→ A is pp (for each input, we have p possible inputs). To find the onto
functions, we have to remove whichever ones are not onto. Therefore, we must remove those that miss at
least 1 value. There are

(
p
1

)
ways of choosing the missed value and (p− 1)p functions missing that particular

value (for each input, we have p − 1 possibilities). But when we remove all of these functions, we took out
some too many times, indeed, any function that misses at least 2 values was over counted. So we have to
add it back in. We get

(
p
2

)
(p − 2)p such functions. We continue in this fashion using inclusion-exclusion to

get the formula

p! =

p∑
k=0

(−1)k
(
p

k

)
(p− k)p.

Now divide by p and analyze modulo p:

(p− 1)! =
1

p

p∑
k=0

(−1)k
(
p

k

)
(p− k)p =

p∑
k=0

(−1)k
(p− 1)!

k!(p− k)!
(p− k)p

≡ (−1)p
p−1∑
k=1

(−1)k
(p− 1)!

k!(p− k)!
kn mod p. (2)

Now

k!(p− k)! ≡ k(−1)k−1(p− (k − 1))(p− (k − 2)) · · · (p− 1)(p− k)!

≡ k(−1)k−1(p− 1)! mod p. (3)

Therefore, from (2) and (3), we get

(p− 1)! ≡ (−1)p
p−1∑
k=1

(−1)
(p− 1)!

k(p− 1)!
kp ≡

p−1∑
k=1

kp−1 mod p.

From Fermat’s Little Theorem, kp−1 ≡ 1 mod p. Therefore, the inner sum consists of p − 1 ones and the
proof is complete.

�

7 Diophantine Equations and Pythagorean Triples

Definition 7. A Diophantine equation is an algebraic equation whose coefficients and solutions are to be
integer numbers.

For example: Find all positive integers a, b, c such that a2 + b2 = c2. The triples (a, b, c) of positive
integers satisfying a2 + b2 = c2 are known as Pythagorean triples. The most famous one is 32 + 42 = 52.
Let’s find a formula to generate all of them.
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First note that if gcd(a, b, c) = d and a2 + b2 = c2, then
(
a
d

)2
+
(
b
d

)2
=
(
c
d

)2
. We can therefore focus on

solving the equation when gcd(a, b, c) = 1 (since we can reduce any other triple to one with gcd(a, b, c) = 1).
These triples are called primitive triples.

Suppose (a, b, c) = 1 and a2 + b2 = c2. Suppose (a, b) = d, then since c2 = a2 + b2, we have (a, b, c) = d.
This implies d = 1. Similarly, (a, c) = 1 = (b, c). Since (a, b) = 1, they can’t both be even. Suppose they are
both odd, then a2 and b2 have remainder 1 when divided by 4, so c2 has remainder 2. But there is no square
that has remainder 2 when dividing by 4. Therefore one of a and b is even and the other is odd. Without
loss of generality, suppose b is even. Since a2 + b2 = c2, then a2 = (c− b)(c+ b).

Now (c− b, c+ b) = (c+ b, 2b). Since c is odd and b is even, then c+ b is odd. Therefore (c+ b, 2) = 1.
Therefore (c+b, 2b) = (c+b, b) = (c, b) = 1. Therefore c−b and c+b are relatively prime. But (c−b)(c+b) =
a2. By the Fundamental Theorem of Arithmetic, c− b and c+ b both have to be squares that are relatively
prime to each other. Therefore

c− b = u2 c+ b = v2

Then we can solve for c and b and get

c =
u2 + v2

2
b =

v2 − u2

2
,

where u and v are any odd positive integers that are relatively prime to each other. We then get that
a =

√
(c− b)(c+ b) = uv.

Therefore the Pythagorean triples are all of the form(
uvk,

v2 − u2

2
k,
u2 + v2

2
k

)
,

where u, v are relatively prime odd integers and k is any positive integer. We can also swap a and b.

8 Linear Diophantine Equations

Linear Diophantine equations are equations like ax + by = c, where a, b, c are integers and we are only
interested in solutions such that x and y are integers.
Big Question 1. Given some integers a, b for what integers c do there exist solutions to ax+ by = c?

(a) What is the smallest positive integer d such that we can write mx0 +ny0 = d for some integers x0 and
y0?

(b) Do there exist x1, y1 such that mx1 + ny1 = kd for an arbitrary integer k? If so, write x1 and y1 in
terms of x0 and y0. If not, provide a counterexample and explain.

(c) Consider ` such that d - `. Do there exist x2, y2 such that mx2 + ny2 = `? If so, write x1 and y1 in
terms of x0 and y0. If not, provide a counterexample and explain.

(d) Based on what you found in parts b and c, when do we have a solution to the equation mx+ ny = z
(where m,n, z are given integer values and x and y must be integers)?

Big Question 2. If there is a solution to an equation ax+ by = c, how do we find it?

Big Question 3. Can there be multiple solutions to an equation ax + by = c? If so, how many are there
and how do we find all of them?

(a) Consider the equation 2x + 3y = 1. Find at least five (x, y) pairs that are solutions to this equation.
Is there any limit to the number of solution pairs we can find?

(b) Do you see some pattern that relates your solutions from part a to one another? Hypothesize a
general form for solutions to ax+ by = 1 given that (x0, y0) is one solution (you may either write this
symbolically or describe in words).
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(c) Check your hypothesis from part b by looking at solutions to 3x+ 5y = 1 and 4x+ 15y = 1.

(d) Check your hypothesis from part b by looking at solutions to 2x+ 3y = 4 and 2x+ 3y = 6.

(e) What about the equations 2x+4y = 2 or 6x+15y = 3? Find at least five (x, y) pairs that are solutions
to each equation. What is different here from the equations we dealt with before? How can we modify
our hypothesis from part b to account for this difference?

(f) Suppose ax + by = c is a linear diophantine equation with one solution (x0, y0). Give a general form
for all solutions to the equation (you may either write this symbolically or describe in words).

Theorem 12. Let a, b, c be integers. Then the equation ax + by = c has solutions in integers (x, y) if and
only if gcd(a, b)|c. In this case the equation has infinitely many solutions in ordered pairs of integer numbers.
In fact, if (x0, y0) is an initial solution, then all solutions may be written like this:

(x, y) =

(
x0 +

kb

gcd(a, b)
, y0 −

ka

gcd(a, b)

)
,

where here k ranges through all integer numbers.

Remark 13. In the case of gcd(a, b) = 1, solutions are parametrized (x0 + kb, y0 − ka).

9 Chicken McNugget Theorem

We’ll now discuss something colloquially referred to as the “Chicken McNugget Theorem.” The supposed
story is that McDonald’s used to sell Chicken McNuggets in two different size offerings: 9 piece boxes and
20 piece boxes. Someone wondered what the largest number of Chicken McNuggets you couldn’t order
was (assuming no special orders or throwing away/eating McNuggets). The Chicken McNugget Theorem
generalized and answered this question.

Notice that this is a bit different from the equations we have been discussing in that in this case, x and y
must be nonnegative (i.e. we can’t order negative boxes of McNuggets). Putting this in mathematical form,
we have:

Theorem 14. If gcd(m,n) = 1, the greatest integer that cannot be written in the form mx + ny for
nonnegative integers x, y is mn−m− n.

We will prove a stronger version of this theorem. To do so, we’ll need to use the “we should name this”
lemma:

Lemma 3. Let a and b be relatively prime positive integers. Then a, 2a, 3a, . . . , (b−1)a consists of different
nonzero remainders modulo b.

Theorem 15 (Chicken McNugget Theorem). For a, b relatively prime, there exists a maximum M such that
there is no nonnegative integers x, y satisfying ax + by = M , and for any n > M , there exists nonnegative
integers x, y such that ax + by = n. In fact M = ab − a − b = (a − 1)(b − 1) − 1 and the number of
positive integers that don’t have a linear representation of the form ax + by with nonnegative integers x, y

is (a−1)(b−1)
2 .

Proof. One of a, b must be the maximum, so without loss of generality suppose a > b (if a = b, then a = b = 1
to be able to be relatively prime and the statement is obvious). Consider the following table:

0 b 2b 3b 4b . . .

a a+ b a+ 2b a+ 3b a+ 4b . . .

2a 2a+ b 2a+ 2b 2a+ 3b a+ 4b . . .

...
...

...
...

...
...

(b− 1)a (b− 1)a+ b (b− 1)a+ 2b (b− 1)a+ 3b (b− 1)a+ 4b . . .
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The first row consists of all numbers congruent to 0 modb which are “representable” (we’ll say that n is
representable if there exist nonnegative integers x, y such that ax + by = n). The second row are all the
numbers congruent to a mod b that are representable, and so on. The smallest number that is congruent to
(b− 1)a mod b that is representable is (b− 1)a. Therefore (b− 1)a− b = ab−a− b = M is not representable.
Now let’s show that anything beyond M is representable. Suppose n > M . Note that the rows represent
the remainders of 0, a, 2a, 3a, . . . , (b − 1)a mod b. But by the Lemma, we know this represent all possible
remainders. Now let i be such that n ≡ ia mod b. If i = (b − 1), then because M ≡ (b − 1)a mod b and
n > M , then n ≥ M + b = (b− 1)a. Therefore n = (b− 1)a+ kb for some nonnegative integer k and hence
it’s representable. Now suppose i < b− 1. We know n > M = (b− 1)a− b, but (b− 1− i) > 0 since i < b− 1
and a > b, therefore (b− 1− i)a− b > a− b > 0, which implies that n > ia. Since n ≡ ia mod b and n > ia,
then n = ia + kb for some positive integer k. But then n is representable. This completes the proof that
there is an M , that M = ab− a− b.

Now let’s count the number of non-representable numbers. There are no numbers that are 0 mod b that
are non-representable. The numbers congruent to a mod b that are not representable are those that are
positive and less than a. Suppose a = kb + r for some 0 < r < b, then we can choose j = 0, 1, 2, . . . , k − 1
and bj + r is a number congruent to a mod b that is not representable. Note that there are k numbers and
that k is the quotient of a/b. This is the largest integer less than or equal to a/b. We denote this by

⌊
a
b

⌋
.

Analogously we can show that the number of non-representable numbers is

S =
⌊a
b

⌋
+

⌊
2a

b

⌋
+

⌊
3a

b

⌋
+ . . .+

⌊
(b− 1)a

b

⌋
.

Now note that b iab c = ia
b −

ri
q , where ri ≡ ia mod b and 0 ≤ ri ≤ b− 1. Therefore we can replace each term

in the sum S and get

S =
a

b
− r1

b
+

2a

b
− r2

b
+ . . .+

(b− 1)a

b
− rb−1a

b

=

(
a

b
+

2a

b
+ . . .+

(b− 1)a

b

)
−
(r1
b

+
r2
b

+ . . .+
rb−1a

b

)
=
a

b
(1 + 2 + . . .+ (b− 1)) +

1

b
(1 + 2 + . . .+ (b− 1))

=
a(b− 1)− (b− 1)

2
=

(a− 1)(b− 1)

2
.

Note that we used that the remainders of a, 2a, . . . , (b− 1)a are all different and all nonzero, so that means

r1 + r2 + . . .+ rb−1 = 1 + 2 + . . .+ (b− 1) = (b−1)b
2 .

Alternative Proof. This is an alternative proof of the fact that the number of positive integers that

don’t have a linear representation of the form ax + by with nonnegative integers x, y is (a−1)(b−1)
2 . The

number of positive integers that are not expressed in the form am+ nb is⌊a
b

⌋
+

⌊
2a

b

⌋
+

⌊
3a

b

⌋
+ . . .+

⌊
(b− 1)a

b

⌋
.

Consider the following figure for the case a = 5, b = 7: It turns out that
⌊
ia
b

⌋
is the number of points with

integer coordinates between the line y = a
bx and the x-axis. Therefore the sum is the number of lattice

points1 inside the triangle. Since (a, b) = 1, there are no lattice points on the diagonal. Therefore, we
can use symmetry to see that the total number of lattice points is the number of lattice points inside the
rectangle over 2. But the number of lattice points inside the rectangle is (a− 1)(b− 1).

�

1Points with integer coordinates
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Figure 1: The points with integer coordinates below the line y = 5
7x when 0 < x < 7.
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