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Most problems below are from Judson.

1. Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are
prime?

(a) Z18

(b) Z25

(c) Q

Solution 1.

(a) The maximal ideals are {0, 2, 4, . . . , 16}, {0, 3, 6, . . . , 15}, and Z18. They are both also prime
ideals. The rest of the ideals are {0}, {0, 6, 12}, {0, 9}.

(b) The maximal (and prime) ideals are Z25 and {0, 5, 10, 15, 20}. The other ideal is {0}.
(c) We’ll prove the only ideals are {0, }, Q. Q is maximal and prime, while {0} is neither. Suppose

there was an ideal I 6= {0}. Then I has an element q 6= 0. Since q ∈ Q, then 1
q ∈ Q, but since I

is an ideal and q ∈ I, then any multiplication of q times a rational is in I. Therefore q
(

1
q

)
∈ I.

So 1 ∈ I, so I = Q. Therefore there are only two ideals, {0} and Q.

2. Find all ring homomorphisms φ : Z/6Z→ Z/15Z.

Solution 2. Let φ : Z/6Z→ Z/15Z be a ring homomorphism. Then φ(0) = 0. Let φ(1) = k. Then

0 = φ(0) = φ(1 + 5) = φ(1) + φ(5) = k + 5k = 6k.

Therefore 6k ≡ 0 mod 15. This means k ≡ 0 mod 5, therefore k = 0, 5, 10.

Now using multiplicativity
k = φ(1) = φ(1 · 1) = φ(1)φ(1) = k2.

Therefore k2 ≡ k mod 15. When k = 0, 10 we have k2 ≡ k mod 15. When k = 5 we haave k2 6≡
k mod 15. Therefore k = 0 or k = 10.

The two possible ring homomorphisms are

• φ(a) = 0 for all a, and

• φ(n) = 0, 10, 5, 0, 10, 5 for n = 0, 1, 2, 3, 4, 5, respectively.

3. Let m,n be positive integers. How many ring homomorphisms are there from Zm to Zn? Hint:
Consider d = gcd(m,n).

Solution 3. As done in the previous exercise, let φ(1) = k. Then φ(a) = ak. To satisfy additivity we
need

0 = φ(0) = φ(1 + (m− 1)) = φ(1) + φ(m− 1) = k + (m− 1)k = mk.
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Therefore mk ≡ 0 mod n. Let d = gcd(m,n). Then(m
d

)
k ≡ 0 mod

(n
d

)
,

but m/d and n/d don’t share any factors (other than 1) so k ≡ 0 mod n/d. So we can write k = rnd
for some r ∈ {0, 1, . . . , d− 1}.
To satisfy multiplicativity we need

r
n

d
= k = φ(1) = φ(1)φ(1) = k2 = r2

(n
d

)2
.

Therefore

r
n

d
≡ r2

(n
d

)2
mod n.

After dividing by n/d we get

r ≡ r2
(n
d

)
mod d.

Then
r
(n
d
r − 1

)
≡ 0 mod d.

Now, r and n
d r − 1 are relatively prime, so they share no factors in common. If we do the prime

factorization of d as
d = pα1

1 pα2
2 · · · p

αt
t q

β1

1 qβ2

2 · · · qβs
s ,

where the primes q1, q2, . . . , qs are all the primes that divide d and n/d. Then there are 2t possible
ring homomorphisms. Namely solve the system of equations

r ≡ 0 mod qβ1

1 · · · qβs
s p

αi1
i1
p
αi2
i2
· · · pαih

ih
n

d
r ≡ 1 mod p

αj1
j1

p
αj2
j2
· · · pαt−h

jt−h
,

for each possible partition of the pi’s in two sets. There are 2t ways of doing that, and there’s a unique
solution r modulo d for each choice, which in turn creates a unique k modulo n.

Finally we need to prove that each one of these is in fact a ring homomorphism. Suppose a k is picked
using the above conditions, i.e., mk ≡ 0 mod n and k2 ≡ k mod n. Let’s show this creates a ring
homomorphism.

Let a, b ∈ Zm. Then a + b = (a + b) mod m + m` for some integer ` and ab = (ab) mod m + mg for
some integer g. We have φ(a+ b) = (a+ b mod m)k mod n and φ(ab) = ((ab) mod mk2 mod n. Now

φ(a) + φ(b) = ak + bk mod n = (a+ b)k mod n

= ((a+ b) mod m)k +mk` mod n ≡ ((a+ b) mod m)k mod n = φ(a+ b).

φ(a)φ(b) = (ab)k2 mod n = (ab mod m)k2 +mgk2 mod n ≡ φ(ab) +mkg mod n = φ(ab).

4. Prove or disprove: The ring Q(
√

2 ) = {a+b
√

2 : a, b ∈ Q} is isomorphic to the ring Q(
√

3 ) = {a+b
√

3 :
a, b ∈ Q}.

Solution 4. Suppose φ : Q(
√

2)→ Q(
√

3) is a ring isomorphism. Since φ(0) = φ(0 + 0) = φ(0) +φ(0),
then φ(0) = 0. Let x = φ(1). We have x = φ(1) = φ(1 · 1) = φ(1)φ(1) = x2. But x ∈ Q(

√
3) ⊂ R.

Therefore we can solve x2 = x in the reals. The solutions are x = 0 and x = 1. If x = 0, then φ(a) = 0
for all a, which is not a bijection. Therefore φ(1) = 1. Then φ(2) = φ(1 + 1) = φ(1) + φ(1) = 2. Let
y = φ(

√
2). Then

2 = φ(2) = φ(
√

2 ·
√

2) = φ(
√

2)φ(
√

2) = y2.

Therefore y2 = 2. This means y =
√

2 or y = −
√

2. However, ±
√

2 6∈ Q(
√

3), which is a contradiction.
This means Q(

√
2) is not isomorphic to Q(

√
3).
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For those wondering how do we know
√

2 6∈ Q(
√

3). Suppose
√

2 ∈ Q(
√

3), then there exist integers
a, b, c, d with b 6= 0, d 6= 0 such that √

2 =
a

b
+
c

d

√
3.

Since
√

2 is irrational, then c 6= 0. Therefore

bd
√

2 = ad+ bc
√

3

b(d
√

2− c
√

3) = ad

b2(2d2 + 3c2 − 2cd
√

6) = a2d2

√
6 =

a2d2 − 2b2d2 − 3b2c2

−2b2cd
∈ Q.

But
√

6 is irrational, so we have a contrradiction.

5. Prove that the Gaussian integers, Z[i], are an integral domain.

Solution 5. Let’s assume we already know that the Gaussian integers are a ring and let’s prove that
they are an integral domain. Suppose x, y ∈ Z[i] such that xy = 0. Let x = a + bi and y = x + di.
Then

0 = xy = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Therefore
ac− bd = 0,

and
ad+ bc = 0.

If c = 0, then bd = 0 and ad = 0. If d = 0, then c+ di = 0 + 0i = 0, so y = 0 (and hence one of x and
y is 0). If d 6= 0, then since bd = 0, b = 0; and because ad = 0, a = 0. Therefore a + bi = 0 + 0i = 0,
so x = 0. Therefore if c = 0, one of x and y is zero.

Now let’s take care of the case c 6= 0. Then a =
bd

c
and so

bd2

c
= −bc, implying bd2 = −bc2. If b 6= 0,

then d2 = −c2. But d2 ≥ 0 and c2 ≥ 0. The only way d2 = −c2 is if d = c = 0, in which case y = 0.
Since c 6= 0, then b = 0. But then

a =
bd

c
=

0

c
= 0,

so x = a+ bi = 0 + 0i = 0.

In all cases, we have that either x = 0 or y = 0 and hence Z[i] is an integral domain.

Alternative Solution. Suppose (a+ bi)(c+ di) = 0 with a+ bi 6= 0. Since a+ bi ∈ C and a+ bi 6= 0,
then it has an inverse in C (namely a

a2+b2 −
b

a2+b2 i). By multiplying by the inverse we get c+ di = 0.
Therefore Z[i] is an integral domain.

Remark 1. The alternative solutions suggests that if R is a subring of a field F, then R is an integral
domain.

6. Let φ : R→ S be a ring homomorphism. Prove each of the following statements.

(a) If R is a commutative ring, then φ(R) is a commutative ring.

(b) φ(0) = 0.

(c) Let 1R and 1S be the identities for R and S, respectively. If φ is onto, then φ(1R) = 1S .

(d) If R is a field and φ(R) 6= 0, then φ(R) is a field.

Solution 6.

3



(a) Let φ(r), φ(s) ∈ φ(R). We have φ(r)φ(s) = φ(rs) = φ(sr) = φ(s)φ(r). Therefore φ(R) is
commutative.

(b) φ(0) = φ(0 + 0) = φ(0) + φ(0). Since S is a ring, then φ(0) has an additive inverse, therefore
φ(0) = 0.

(c) Let s = φ(1R). Let r be such that φ(r) = 1S (such an r exists because φ is onto). Then

1S = φ(r) = φ(r · 1R) = φ(r)φ(1R) = φ(r)s = 1Ss = s.

Therefore s = 1S , which is what we want to prove.

(d) Since R is a field, R is commutative, so φ(R) is commutative (by (a)). Suppose φ(1) = 0, then
φ(r) = φ(r)φ(1) = 0 for all r ∈ R. This would contradict that φ is not the 0 function. Therefore
φ(1) 6= 0. Now let φ(r) ∈ φ(R) such that φ(r) 6= 0. Since φ(r) 6= 0, r 6= 0. But then r has an
inverse r−1, so

φ(1) = φ(rr−1) = φ(r)φ(r−1).

Therefore φ(r) has an inverse in φ(R). Therefore φ(R) is a field.

7. Prove the Third Isomorphism Theorem for rings: Let R be a ring and I and J be ideals of R, where
J ⊂ I. Then

R/I ∼=
R/J

I/J
.

Solution 7. Let φ : R/J → R/I be defined by phi(r + J) = φ(r + I). Let’s show the map is well-
defined. Suppose r + J = s+ J . Then r − s ∈ J ⊆ I. Therefore φ(r + J) = r + I = s+ I = φ(s+ J).
The function is also a ring homomorphism because

φ(r1 + J) + φ(r2 + J) = (r1 + I) + (r2 + I) = (r1 + r2) + I = φ(r1 + r2)

φ(r1 + J) · φ(r2 + J) = (r1 + I) · (r2 + I) = (r1 · r2) + I = φ(r1 · r2).

Let K = ker(φ), then (R/J)/K ∼= φ(R/J). Suppose r+ I ∈ R/I, then φ(r+ J) = r+ I, therefore φ is
onto, so φ(R/J) = R/I.

Suppose φ(r+ J) = 0 + I, then r ∈ I. Therefore the elements in the kernel have the form r+ J where
r ∈ I, i.e., the kernel is I/J .

The First Isomorphism Theorem now implies that R/J
I/J
∼= R/I.

8. Let R be an integral domain. Show that if the only ideals in R are {0} and R itself, R must be a field.

Solution 8. Let a 6= 0 be an element of R. Let I = 〈a〉. Since a 6= 0, then I 6= {0}. By assumption
I = R. But that means 1 ∈ I, so 1 ∈ 〈a〉. That means there is an element r ∈ R such that 1 = ar, but
that means a has an inverse. Therefore R is a field.

9. Let R be a commutative ring. An element a in R is nilpotent if an = 0 for some positive integer n.
Show that the set of all nilpotent elements forms an ideal in R.

Solution 9. Let N be the set of nilpotent elements of R. Let a ∈ N, and b ∈ R. There exists a non-
negative integer n such that an = 0. Since R is commutative, then (ab)n = anbn = 0. Therefore ab ∈ N.
This shows that it has the ideal property and that multiplication is closed. Also (−a)n = (−1)nan = 0,
therefore −a ∈ N, which implies that every element has an additive inverse. 01 = 0, so 0 ∈ N. Finally,
we need to show that for any a, c ∈ N, that (a+c)k = 0 for some non-negative integer k. Since a, c ∈ N,
then there exist nonnegative integer n,m such that an = 0 and cm = 0.

Then

(a+ c)m+n−1 =

m+n−1∑
j=0

(
m+ n− 1

j

)
ajcm+n−1−j .

Note that when j ≥ n, aj = 0. When j ≤ n− 1, then m+ n− 1− j ≥ m, so cm+n−1−j = 0. Therefore
(a+ c)m+n−1 = 0.

Since N is a subring and it satisfies the ideal property, then it is an ideal.
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10. Let p be prime. Prove that

Z(p) = {a/b : a, b ∈ Z and gcd(b, p) = 1}

is a ring. The ring Z(p) is called the ring of integers localized at p.

Solution 10. Let a/b, c/d, e/f ∈ Z(p). We want to show the following:

(a) a/b+ c/d ∈ Z(p)

(b) (a/b)(c/d) ∈ Z(p)

(c) (a/b) + (c/d+ e/f) = (a/b+ c/d) + e/f

(d) (a/b)(c/d+ e/f) = (a/b)(c/d) + (a/b)(e/f)

(e) 0 ∈ Z(p)

(f) −(a/b) ∈ Z(p)

(g) (a/b) + (c/d) = (c/d) + (a/b)

The operations are the ones from R, so they are commutative, associative and distributive. These gives
us (c),(d),(g). 0 = 0/1 and gcd(1, p) = 1, so 0 ∈ Z(p). −(a/b) = −a/b ∈ Z(p). We need only do (a) and
(b).

a

b
+
c

d
=
ad+ bc

bd
,(a

b

)( c
d

)
=
ac

bd
.

Since gcd(b, p) = 1 and gcd(d, p) = 1, then gcd(bd, p) = 1. Therefore a/b+ c/d and (a/b)(c/d) ∈ Z(p)
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