Homework 2

Most problems below are from Judson.

1. Compute each of the following.
(a) $\left(3 x^{2}+2 x-4\right)+\left(4 x^{2}+2\right)$ in \mathbb{Z}_{5}
(b) $\left(3 x^{2}+2 x-4\right)\left(4 x^{2}+2\right)$ in \mathbb{Z}_{5}
(c) $\left(5 x^{2}+3 x-2\right)^{2}$ in \mathbb{Z}_{12}
2. Use the division algorithm to find $q(x)$ and $r(x)$ such that $a(x)=q(x) b(x)+r(x)$ with $\operatorname{deg} r(x)<$ $\operatorname{deg} b(x)$ for each of the following pairs of polynomials.
(a) $a(x)=6 x^{4}-2 x^{3}+x^{2}-3 x+1$ and $b(x)=x^{2}+x-2$ in $\mathbb{Z}_{7}[x]$
(b) $a(x)=4 x^{5}-x^{3}+x^{2}+4$ and $b(x)=x^{3}-2$ in $\mathbb{Z}_{5}[x]$
(c) $a(x)=x^{5}+x^{3}-x^{2}-x$ and $b(x)=x^{3}+x$ in $\mathbb{Z}_{2}[x]$
3. Find all of the zeros for each of the following polynomials.
(a) $5 x^{3}+4 x^{2}-x+9$ in \mathbb{Z}_{12}
(b) $3 x^{3}-4 x^{2}-x+4$ in \mathbb{Z}_{5}
(c) $5 x^{4}+2 x^{2}-3$ in \mathbb{Z}_{7}
(d) $x^{3}+x+1$ in \mathbb{Z}_{2}
4. Find a unit $p(x)$ in $\mathbb{Z}_{4}[x]$ such that $\operatorname{deg} p(x)>1$.

5 . Which of the following polynomials are irreducible over $\mathbb{Q}[x]$?
(a) $x^{4}-2 x^{3}+2 x^{2}+x+4$
(b) $x^{4}-5 x^{3}+3 x-2$
(c) $3 x^{5}-4 x^{3}-6 x^{2}+6$
(d) $5 x^{5}-6 x^{4}-3 x^{2}+9 x-15$
6. Let $f(x)$ be irreducible. If $f(x) \mid p(x) q(x)$, prove that either $f(x) \mid p(x)$ or $f(x) \mid q(x)$.
7. The Rational Root Theorem. Let

$$
p(x)=a_{n} x^{n} a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x],
$$

where $a_{n} \neq 0$. Prove that if $p(r / s)=0$, where $\operatorname{gcd}(r, s)=1$, then $r \mid a_{0}$ and $s \mid a_{n}$.
8. Cyclotomic Polynomials. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is called the cyclotomic polynomial. Show that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} for any prime p.
9. Let $p(x)$ and $q(x)$ be polynomials in $R[x]$, where R is a commutative ring with identity. Prove that $\operatorname{deg}(p(x)+q(x)) \leq \max (\operatorname{deg} p(x), \operatorname{deg} q(x))$.
10. We call a polynomial $p(x) \in \mathbb{Z}_{2}[x]$ perfect if the sum of its divisors $\sigma(p(x))$ equals $p(x)$. For example $x^{2}+x$ is perfect because $\sigma\left(x^{2}+x\right)=1+x+(x+1)+\left(x^{2}+x\right)=x^{2}+x \bmod 2$. Suppose $p(x)$ is perfect. Prove that $x \mid p(x)$ if and only if $(x+1) \mid p(x)$.

