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Most problems below are from Judson.
1. Compute each of the following.
(a) (322 +2x —4) + (422 +2) in Zs5
(b) (3% + 2z — 4)(42? + 2) in Zs
(c) (522 + 3z —2)% in Z12
Solution 1.
(a) 222 42z — 2 = 22% + 22 + 3 mod 5.
(b) 12z* + 622 + 823 + 4z — 1622 — 8 = 22* + 323 + 42 + 2 mod 5.
(c) 25z* + 922 + 4 + 302% — 2022 — 122 = 2* + 62 + 22 + 4 mod 12.

2. Use the division algorithm to find ¢(x) and r(z) such that a(z) = g(z)b(z) + r(x) with degr(z) <
deg b(x) for each of the following pairs of polynomials.

(a) a(x) = 62t —22% + 22 — 3z + 1 and b(z) = 2? + x — 2 in Z;[z]
(b) a(x) = 42° — 23 + 22 + 4 and b(z) = 2> — 2 in Zs[7]
(

(c) a(x) =25+ 23 — 22 — x and b(z) = 2 + x in Zz[z]

Solution 2.
(a) 62% — 223 + 22 — 3z + 1 = (622 — 8z + 21)(2? + x — 2) + (=402 + 43) = (62% — x)(2? +x — 2) +
(2 4+ 1) mod 7.
(b) 42® — 2% + 2% +4 = (42% — 1)(2® — 2) + (422 + 2) mod 5.

(c) 2° + 2% —2? — 2z = (2® + 2)(2®) + 22 + z mod 2.

3. Find all of the zeros for each of the following polynomials.

(a) 523 + 42 —x+9 in Zjo
(b) 32% —42? —x +4in Zs
(c) 5t + 222 — 3 in Z7

(d) 23+ 2 +1in Zs

Solution 3. To find the zeroes of f(z) in Z,, one need only plug in = 0,1,...,n — 1 to f and see
which ones are 0 modulo n.

a) It has no zeroes.

(a)
(b)
()
(d) It has no zeroes (f(0) = f(1) =1.)

The only zero is x = 2 mod 5.

The zeroes are x = 3,4 mod 7.



4. Find a unit p(z) in Z4[x] such that degp(z) > 1.

Solution 4. (222 + 2z +1)? = 42% + 422 + 1 + 823 + 422 + 42 = 1 mod 4, so (22% + 2z + 1) is a unit.

In fact, (22" 422"~ +..- 4+ 22 +1) is a unit for any positive integer n. Indeed, let p(x) = 2™ + 2"~ 4
-+ 4+ x, then

(22" 4+ 22" 4+ 420+ 1)2 = (2p(x) + 1)% = 4(p(x))? + 4p(x) + 1 = 1 mod 4.
Therefore, in Z4[z] we have units of every degree.

5. Which of the following polynomials are irreducible over Q[z]?
(a) x* — 223 + 222 + o + 4
(b) x* — 523 + 3z — 2
(c) 325 — 423 — 622 + 6
(d) 525 — 62* — 32% + 9z — 15
Solution 5.

(a) It factors as (% — 3z + 4)(22 + z + 1).

(b) From the rational root theorem, we see that if it has a linear factor it must have a root in
{-2,-1,1,2}. But it doesn’t have a root from there. Therefore, if it’s reducible, it must be
factored into the product of two quadratics. From Gauss’s Lemma, the quadratics can be written
with integer coefficients, i.e.,

xt =523 + 3z — 2 = (2% + ax + b) (2% + cx + d),

for some integers a, b, ¢, d. By looking at the coefficients, we get the following equations

—5=a+c
0=b+d+ac
3 =ad+bc
—2="bd
Since b, d are integers, then we have two possibilities b = —2,d = 1 or b = 2,d = —1 (note: there’s

also b=1,d = —2 and b = —1,d = 2, but those are symmetric), In the first case we get

—-b=a+c
3=a—-2c
Therefore 3c = —8. But then c is not an integer.
In the second case
—-S=a-+c
3=—-a+2c
Therefore 3c = —2. But then c¢ is not an integer.

Therefore, the polynomial is irreducible.

(c) Use Eisenstein’s criterion with the prime 2. Every coefficient besides the leading coefficient is
even and the constant term is not a multiple of 4. Therefore, it is irreducible.

(d) Use Eisenstein’s criterion with the prime 3. It divides every coefficient besides the leading coeffi-
cient, and 9 does not divide the constant term. Therefore, it is irreducible.

6. Let f(z) be irreducible. If f(x) | p(x)q(x), prove that either f(z) | p(z) or f(z) | q¢(z).



Solution 6. Suppose that f(x) does not divide p(x). Let t(x) and r(z) be such that p(z) = f(z)t(x)+
r(z) with deg(r) < deg(d). We know r(z) # 0 because f(x) does not divide p(z). But then d(z) =
ged(f(z),p(z)) is a divisor of f(z) and f(z) is irreducible, so it must be 1 or f(x). Since it can’t be
f(x), then it must be 1. Therefore f(x) and p(z) are relatively prime. But then, by Bezout’s identity,
there exist a(x),b(z) € Z[z] such that

alw) f(x) + b(a)p(z) = 1.

But then
a(z) f(x)q(z) + b(z)p(z)q(z) = q(z).

We have f(x)|a(z)f(x)q(x) because f(x)|f(x), and we have f(x)|b(z)p(x)q(z) because f(x)|p(z)q(z).
Therefore f(x)|q(x), which is what we wanted to prove.

. The Rational Root Theorem. Let
p(x) = apx™a, 12"+ +ag € Z[x],
where a,, # 0. Prove that if p(r/s) = 0, where ged(r,s) = 1, then r | ag and s | a,,.

Solution 7.
r\"m ryn—1 r
p(T’/S) = Aan (E) + ap_1 (g) + -4 an (;) +ap =0.

Then
n—2_2

A" 4 Q1T S Ao 282 4 o F aor?s™ T2 4 agrs™ T 4 aps™ = 0. (1)
Now if you look at the equation modulo s we have
ap,r™ = 0 mod s.
Therefore s|a,r™. Since ged(r, s) = 1, then s|a,.
Similarly, looking at (1) modulo r we get
aps™ = 0 mod 7.

Therefore r|ag.

. Cyclotomic Polynomials. The polynomial

P —1
By(r) = T L = gt ]

is called the cyclotomic polynomial. Show that ®,(x) is irreducible over Q for any prime p.

Solution 8. Consider ®,(x + 1):

R R L e A R

x T

_ -1 (P p—2 (P\ p-3__ ... p p
T —i—(l)x +(2>x + +(p2>m+(p1>'

Every coefficient that’s not the leading coefficient has the form ﬁik)l for some integer 1 < k <p-—1.

‘I)p(x +1) =

Since k! and (p — k)! are not multiples of p but p! is, then (i) is a multiple of p. Therefore, every
non-leading coefficient is a multiple of p. Furthermore, the constant term is p which is not a multiple
of p?. By Eisenstein’s criterion ®,(z + 1) is irreducible, but then ®,(z) is also irreducible.

. Let p(z) and ¢(x) be polynomials in R[z|, where R is a commutative ring with identity. Prove that
deg(p(z) + g(x)) < max(degp(x), deg g(x)).



10.

Solution 9. Suppose p(z) = apz™ + -+ a1z + ap and g(x) = bypx™ + - - - + byx + by with a,, # 0 and
by # 0. We may assume without loss of generality that n > m because R is commutative. If n # m,
then

P(2)+q(2) = anx™ 4+ F A1 2™+ (@ )T F (A1 F D)™ - (ay +b1) x4 (ag+bo).

Since a,, # 0, then the degree of p(z)+¢(z) is n, which is the same as the max of (deg(p(z)), deg(g(x))).

If n = m, then
p(z) +q(x) = (an + bp)x™ + (an—1 + bn—l)xn71 + -+ (a1 +b1)x + (ap + bo).

If a,, +b, # 0, then the degree of p(x)+¢(x) is n, which is the same as the max of (deg(p(z)), deg(gq(z)).
If a,, + b, = 0, then the degree is at most n — 1, which is smaller than the max of (deg(p(z)), deg(q(z)).
In all cases we have

deg(p(x) + g(2)) < max(deg p(z), deg g()).

We call a polynomial p(z) € Zsa[z] perfect if the sum of its divisors o(p(z)) equals p(z). For example
22 + x is perfect because o(2? + ) = 1+ 2 + (z + 1) + (22 + 2) = 2% + 2 mod 2. Suppose p(z) is
perfect. Prove that z|p(z) if and only if (z + 1)|p(z).

Solution 10. For notation purposes, let o(f(z)) be the sum of the divisors of the polynomial f(z) €
Zslx]. Tt is useful to use that o is multiplicative, i.e., if a(x), b(z) are relatively prime, then o(a(z)b(x)) =

o(a(z))o(b(x)).
Suppose z|p(x). We want to show that (z + 1)|p(x). Note that this is equivalent to showing p(1) = 0.

Consider the factorization of p(z), i.e.,

Qo

p(x) = a*pi () pa(x)*2 - - py(2)

Since p(z) is perfect, then o(p(x)) = p(z), but also

T

a(p(x) = o(@®) [[opi(@)*) = A+ z+a® + -+ ") [[A +pil@) +pi(@)® + -+ pi2)™).
i=1 =1

If k is odd, then a(z) = 1+ z + 2% + - - - + z¥ satisfies a(1) = 0. Therefore, at x = 1, o(p(x)) = 0, so
p(1) = 0. This implies (x+ 1)|p(z) whenever k is odd. Let’s assume k is even. We have z* is relatively
prime with 1 + 2 + - + 2%, so 2*|o([]/_, pi(x)®). Therefore, (from problem 6), there is an i such
that z|o(p;(x)*).

But that means that when x = 0, we have
a((pi(0)*) = 14 pi(0) +p;(0)* + - + p;(0)* = 0 mod 2.

Therefore p;(0) = 1 and «; is odd. If p;(1) = 1, then o(p;(1)*") = 0 because «; is odd. But that
means o(p(1)) = 0, which means p(1) = 0. This is a contradiction. Therefore p;(1) = 0. But p;(z)|p(z),
therefore p(1) = 0. Therefore (x + 1)|p(z).

The proof that (z + 1)|p(x) implies z|p(z) is analogous.



