
Homework 2 Solutions

Enrique Treviño

February 15, 2019

Most problems below are from Judson.

1. Compute each of the following.

(a) (3x2 + 2x− 4) + (4x2 + 2) in Z5

(b) (3x2 + 2x− 4)(4x2 + 2) in Z5

(c) (5x2 + 3x− 2)2 in Z12

Solution 1.

(a) 2x2 + 2x− 2 = 2x2 + 2x+ 3 mod 5.

(b) 12x4 + 6x2 + 8x3 + 4x− 16x2 − 8 = 2x4 + 3x3 + 4x+ 2 mod 5.

(c) 25x4 + 9x2 + 4 + 30x3 − 20x2 − 12x = x4 + 6x3 + x2 + 4 mod 12.

2. Use the division algorithm to find q(x) and r(x) such that a(x) = q(x)b(x) + r(x) with deg r(x) <
deg b(x) for each of the following pairs of polynomials.

(a) a(x) = 6x4 − 2x3 + x2 − 3x+ 1 and b(x) = x2 + x− 2 in Z7[x]

(b) a(x) = 4x5 − x3 + x2 + 4 and b(x) = x3 − 2 in Z5[x]

(c) a(x) = x5 + x3 − x2 − x and b(x) = x3 + x in Z2[x]

Solution 2.

(a) 6x4 − 2x3 + x2 − 3x+ 1 = (6x2 − 8x+ 21)(x2 + x− 2) + (−40x+ 43) = (6x2 − x)(x2 + x− 2) +
(2x+ 1) mod 7.

(b) 4x5 − x3 + x2 + 4 = (4x2 − 1)(x3 − 2) + (4x2 + 2) mod 5.

(c) x5 + x3 − x2 − x = (x3 + x)(x2) + x2 + x mod 2.

3. Find all of the zeros for each of the following polynomials.

(a) 5x3 + 4x2 − x+ 9 in Z12

(b) 3x3 − 4x2 − x+ 4 in Z5

(c) 5x4 + 2x2 − 3 in Z7

(d) x3 + x+ 1 in Z2

Solution 3. To find the zeroes of f(x) in Zn, one need only plug in x = 0, 1, . . . , n − 1 to f and see
which ones are 0 modulo n.

(a) It has no zeroes.

(b) The only zero is x = 2 mod 5.

(c) The zeroes are x = 3, 4 mod 7.

(d) It has no zeroes (f(0) = f(1) = 1.)
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4. Find a unit p(x) in Z4[x] such that deg p(x) > 1.

Solution 4. (2x2 + 2x+ 1)2 = 4x4 + 4x2 + 1 + 8x3 + 4x2 + 4x = 1 mod 4, so (2x2 + 2x+ 1) is a unit.

In fact, (2xn+ 2xn−1 + · · ·+ 2x+ 1) is a unit for any positive integer n. Indeed, let p(x) = xn+xn−1 +
· · ·+ x, then

(2xn + 2xn−1 + · · ·+ 2x+ 1)2 = (2p(x) + 1)2 = 4(p(x))2 + 4p(x) + 1 ≡ 1 mod 4.

Therefore, in Z4[x] we have units of every degree.

5. Which of the following polynomials are irreducible over Q[x]?

(a) x4 − 2x3 + 2x2 + x+ 4

(b) x4 − 5x3 + 3x− 2

(c) 3x5 − 4x3 − 6x2 + 6

(d) 5x5 − 6x4 − 3x2 + 9x− 15

Solution 5.

(a) It factors as (x2 − 3x+ 4)(x2 + x+ 1).

(b) From the rational root theorem, we see that if it has a linear factor it must have a root in
{−2,−1, 1, 2}. But it doesn’t have a root from there. Therefore, if it’s reducible, it must be
factored into the product of two quadratics. From Gauss’s Lemma, the quadratics can be written
with integer coefficients, i.e.,

x4 − 5x3 + 3x− 2 = (x2 + ax+ b)(x2 + cx+ d),

for some integers a, b, c, d. By looking at the coefficients, we get the following equations

−5 = a+ c

0 = b+ d+ ac

3 = ad+ bc

−2 = bd

Since b, d are integers, then we have two possibilities b = −2, d = 1 or b = 2, d = −1 (note: there’s
also b = 1, d = −2 and b = −1, d = 2, but those are symmetric), In the first case we get

−5 = a+ c

3 = a− 2c

Therefore 3c = −8. But then c is not an integer.

In the second case

−5 = a+ c

3 = −a+ 2c

Therefore 3c = −2. But then c is not an integer.

Therefore, the polynomial is irreducible.

(c) Use Eisenstein’s criterion with the prime 2. Every coefficient besides the leading coefficient is
even and the constant term is not a multiple of 4. Therefore, it is irreducible.

(d) Use Eisenstein’s criterion with the prime 3. It divides every coefficient besides the leading coeffi-
cient, and 9 does not divide the constant term. Therefore, it is irreducible.

6. Let f(x) be irreducible. If f(x) | p(x)q(x), prove that either f(x) | p(x) or f(x) | q(x).
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Solution 6. Suppose that f(x) does not divide p(x). Let t(x) and r(x) be such that p(x) = f(x)t(x)+
r(x) with deg(r) < deg(d). We know r(x) 6= 0 because f(x) does not divide p(x). But then d(x) =
gcd(f(x), p(x)) is a divisor of f(x) and f(x) is irreducible, so it must be 1 or f(x). Since it can’t be
f(x), then it must be 1. Therefore f(x) and p(x) are relatively prime. But then, by Bezout’s identity,
there exist a(x), b(x) ∈ Z[x] such that

a(x)f(x) + b(x)p(x) = 1.

But then
a(x)f(x)q(x) + b(x)p(x)q(x) = q(x).

We have f(x)|a(x)f(x)q(x) because f(x)|f(x), and we have f(x)|b(x)p(x)q(x) because f(x)|p(x)q(x).
Therefore f(x)|q(x), which is what we wanted to prove.

7. The Rational Root Theorem. Let

p(x) = anx
nan−1x

n−1 + · · ·+ a0 ∈ Z[x],

where an 6= 0. Prove that if p(r/s) = 0, where gcd(r, s) = 1, then r | a0 and s | an.

Solution 7.

p(r/s) = an

(r
s

)n
+ an−1

(r
s

)n−1

+ · · ·+ a1

(r
s

)
+ a0 = 0.

Then
anr

n + an−1r
n−1s+ an−2r

n−2s2 + · · ·+ a2r
2sn−2 + a1rs

n−1 + a0s
n = 0. (1)

Now if you look at the equation modulo s we have

anr
n ≡ 0 mod s.

Therefore s|anrn. Since gcd(r, s) = 1, then s|an.

Similarly, looking at (1) modulo r we get

a0s
n ≡ 0 mod r.

Therefore r|a0.

8. Cyclotomic Polynomials. The polynomial

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is called the cyclotomic polynomial. Show that Φp(x) is irreducible over Q for any prime p.

Solution 8. Consider Φp(x+ 1):

Φp(x+ 1) =
(x+ 1)p − 1

x
=
xp +

(
p
1

)
xp−1 +

(
p
2

)
xp−2 + · · ·+

(
p
p−1

)
x+ 1− 1

x

= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + · · ·+

(
p

p− 2

)
x+

(
p

p− 1

)
.

Every coefficient that’s not the leading coefficient has the form p!
k!(p−k)! for some integer 1 ≤ k ≤ p− 1.

Since k! and (p − k)! are not multiples of p but p! is, then
(
p
k

)
is a multiple of p. Therefore, every

non-leading coefficient is a multiple of p. Furthermore, the constant term is p which is not a multiple
of p2. By Eisenstein’s criterion Φp(x+ 1) is irreducible, but then Φp(x) is also irreducible.

9. Let p(x) and q(x) be polynomials in R[x], where R is a commutative ring with identity. Prove that
deg(p(x) + q(x)) ≤ max(deg p(x),deg q(x)).
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Solution 9. Suppose p(x) = anx
n + · · ·+ a1x+ a0 and q(x) = bmx

m + · · ·+ b1x+ b0 with an 6= 0 and
bm 6= 0. We may assume without loss of generality that n ≥ m because R is commutative. If n 6= m,
then

p(x)+q(x) = anx
n+ · · ·+am+1x

m+1 +(am+bm)xm+(am−1 +bm−1)xm−1 + · · ·+(a1 +b1)x+(a0 +b0).

Since an 6= 0, then the degree of p(x)+q(x) is n, which is the same as the max of (deg(p(x)),deg(q(x))).

If n = m, then

p(x) + q(x) = (an + bn)xn + (an−1 + bn−1)xn−1 + · · ·+ (a1 + b1)x+ (a0 + b0).

If an+bn 6= 0, then the degree of p(x)+q(x) is n, which is the same as the max of (deg(p(x)),deg(q(x)).
If an+ bn = 0, then the degree is at most n−1, which is smaller than the max of (deg(p(x)),deg(q(x)).
In all cases we have

deg(p(x) + q(x)) ≤ max(deg p(x),deg q(x)).

10. We call a polynomial p(x) ∈ Z2[x] perfect if the sum of its divisors σ(p(x)) equals p(x). For example
x2 + x is perfect because σ(x2 + x) = 1 + x + (x + 1) + (x2 + x) = x2 + x mod 2. Suppose p(x) is
perfect. Prove that x|p(x) if and only if (x+ 1)|p(x).

Solution 10. For notation purposes, let σ(f(x)) be the sum of the divisors of the polynomial f(x) ∈
Z2[x]. It is useful to use that σ is multiplicative, i.e., if a(x), b(x) are relatively prime, then σ(a(x)b(x)) =
σ(a(x))σ(b(x)).

Suppose x|p(x). We want to show that (x+ 1)|p(x). Note that this is equivalent to showing p(1) = 0.

Consider the factorization of p(x), i.e.,

p(x) = xkp1(x)α1p2(x)α2 · · · pr(x)αr .

Since p(x) is perfect, then σ(p(x)) = p(x), but also

σ(p(x)) = σ(xk)

r∏
i=1

σ(pi(x)αi) = (1 + x+ x2 + · · ·+ xk)

r∏
i=1

(1 + pi(x) + pi(x)2 + · · ·+ pi(x)αi).

If k is odd, then a(x) = 1 + x + x2 + · · · + xk satisfies a(1) = 0. Therefore, at x = 1, σ(p(x)) = 0, so
p(1) = 0. This implies (x+ 1)|p(x) whenever k is odd. Let’s assume k is even. We have xk is relatively
prime with 1 + x + · · · + xk, so xk|σ(

∏r
i=1 pi(x)αi). Therefore, (from problem 6), there is an i such

that x|σ(pi(x)αi).

But that means that when x = 0, we have

σ((pi(0)αi) = 1 + pi(0) + pi(0)2 + · · ·+ pi(0)αi = 0 mod 2.

Therefore pi(0) = 1 and αi is odd. If pi(1) = 1, then σ(pi(1)αi) = 0 because αi is odd. But that
means σ(p(1)) = 0, which means p(1) = 0. This is a contradiction.Therefore pi(1) = 0. But pi(x)|p(x),
therefore p(1) = 0. Therefore (x+ 1)|p(x).

The proof that (x+ 1)|p(x) implies x|p(x) is analogous.
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