Homework 2 Solutions

Enrique Treviño

February 15, 2019

Most problems below are from Judson.

1. Compute each of the following.
(a) $\left(3 x^{2}+2 x-4\right)+\left(4 x^{2}+2\right)$ in \mathbb{Z}_{5}
(b) $\left(3 x^{2}+2 x-4\right)\left(4 x^{2}+2\right)$ in \mathbb{Z}_{5}
(c) $\left(5 x^{2}+3 x-2\right)^{2}$ in \mathbb{Z}_{12}

Solution 1.

(a) $2 x^{2}+2 x-2=2 x^{2}+2 x+3 \bmod 5$.
(b) $12 x^{4}+6 x^{2}+8 x^{3}+4 x-16 x^{2}-8=2 x^{4}+3 x^{3}+4 x+2 \bmod 5$.
(c) $25 x^{4}+9 x^{2}+4+30 x^{3}-20 x^{2}-12 x=x^{4}+6 x^{3}+x^{2}+4 \bmod 12$.
2. Use the division algorithm to find $q(x)$ and $r(x)$ such that $a(x)=q(x) b(x)+r(x)$ with $\operatorname{deg} r(x)<$ $\operatorname{deg} b(x)$ for each of the following pairs of polynomials.
(a) $a(x)=6 x^{4}-2 x^{3}+x^{2}-3 x+1$ and $b(x)=x^{2}+x-2$ in $\mathbb{Z}_{7}[x]$
(b) $a(x)=4 x^{5}-x^{3}+x^{2}+4$ and $b(x)=x^{3}-2$ in $\mathbb{Z}_{5}[x]$
(c) $a(x)=x^{5}+x^{3}-x^{2}-x$ and $b(x)=x^{3}+x$ in $\mathbb{Z}_{2}[x]$

Solution 2.

(a) $6 x^{4}-2 x^{3}+x^{2}-3 x+1=\left(6 x^{2}-8 x+21\right)\left(x^{2}+x-2\right)+(-40 x+43)=\left(6 x^{2}-x\right)\left(x^{2}+x-2\right)+$ $(2 x+1) \bmod 7$.
(b) $4 x^{5}-x^{3}+x^{2}+4=\left(4 x^{2}-1\right)\left(x^{3}-2\right)+\left(4 x^{2}+2\right) \bmod 5$.
(c) $x^{5}+x^{3}-x^{2}-x=\left(x^{3}+x\right)\left(x^{2}\right)+x^{2}+x \bmod 2$.
3. Find all of the zeros for each of the following polynomials.
(a) $5 x^{3}+4 x^{2}-x+9$ in \mathbb{Z}_{12}
(b) $3 x^{3}-4 x^{2}-x+4$ in \mathbb{Z}_{5}
(c) $5 x^{4}+2 x^{2}-3$ in \mathbb{Z}_{7}
(d) $x^{3}+x+1$ in \mathbb{Z}_{2}

Solution 3. To find the zeroes of $f(x)$ in \mathbb{Z}_{n}, one need only plug in $x=0,1, \ldots, n-1$ to f and see which ones are 0 modulo n.
(a) It has no zeroes.
(b) The only zero is $x=2 \bmod 5$.
(c) The zeroes are $x=3,4 \bmod 7$.
(d) It has no zeroes $(f(0)=f(1)=1$.)
4. Find a unit $p(x)$ in $\mathbb{Z}_{4}[x]$ such that $\operatorname{deg} p(x)>1$.

Solution 4. $\left(2 x^{2}+2 x+1\right)^{2}=4 x^{4}+4 x^{2}+1+8 x^{3}+4 x^{2}+4 x=1 \bmod 4$, so $\left(2 x^{2}+2 x+1\right)$ is a unit. In fact, $\left(2 x^{n}+2 x^{n-1}+\cdots+2 x+1\right)$ is a unit for any positive integer n. Indeed, let $p(x)=x^{n}+x^{n-1}+$ $\cdots+x$, then

$$
\left(2 x^{n}+2 x^{n-1}+\cdots+2 x+1\right)^{2}=(2 p(x)+1)^{2}=4(p(x))^{2}+4 p(x)+1 \equiv 1 \bmod 4 .
$$

Therefore, in $\mathbb{Z}_{4}[x]$ we have units of every degree.
5 . Which of the following polynomials are irreducible over $\mathbb{Q}[x]$?
(a) $x^{4}-2 x^{3}+2 x^{2}+x+4$
(b) $x^{4}-5 x^{3}+3 x-2$
(c) $3 x^{5}-4 x^{3}-6 x^{2}+6$
(d) $5 x^{5}-6 x^{4}-3 x^{2}+9 x-15$

Solution 5.

(a) It factors as $\left(x^{2}-3 x+4\right)\left(x^{2}+x+1\right)$.
(b) From the rational root theorem, we see that if it has a linear factor it must have a root in $\{-2,-1,1,2\}$. But it doesn't have a root from there. Therefore, if it's reducible, it must be factored into the product of two quadratics. From Gauss's Lemma, the quadratics can be written with integer coefficients, i.e.,

$$
x^{4}-5 x^{3}+3 x-2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

for some integers a, b, c, d. By looking at the coefficients, we get the following equations

$$
\begin{aligned}
-5 & =a+c \\
0 & =b+d+a c \\
3 & =a d+b c \\
-2 & =b d
\end{aligned}
$$

Since b, d are integers, then we have two possibilities $b=-2, d=1$ or $b=2, d=-1$ (note: there's also $b=1, d=-2$ and $b=-1, d=2$, but those are symmetric), In the first case we get

$$
\begin{aligned}
-5 & =a+c \\
3 & =a-2 c
\end{aligned}
$$

Therefore $3 c=-8$. But then c is not an integer.
In the second case

$$
\begin{aligned}
& -5=a+c \\
& 3=-a+2 c
\end{aligned}
$$

Therefore $3 c=-2$. But then c is not an integer.
Therefore, the polynomial is irreducible.
(c) Use Eisenstein's criterion with the prime 2. Every coefficient besides the leading coefficient is even and the constant term is not a multiple of 4 . Therefore, it is irreducible.
(d) Use Eisenstein's criterion with the prime 3. It divides every coefficient besides the leading coefficient, and 9 does not divide the constant term. Therefore, it is irreducible.
6. Let $f(x)$ be irreducible. If $f(x) \mid p(x) q(x)$, prove that either $f(x) \mid p(x)$ or $f(x) \mid q(x)$.

Solution 6. Suppose that $f(x)$ does not divide $p(x)$. Let $t(x)$ and $r(x)$ be such that $p(x)=f(x) t(x)+$ $r(x)$ with $\operatorname{deg}(r)<\operatorname{deg}(d)$. We know $r(x) \neq 0$ because $f(x)$ does not divide $p(x)$. But then $d(x)=$ $\operatorname{gcd}(f(x), p(x))$ is a divisor of $f(x)$ and $f(x)$ is irreducible, so it must be 1 or $f(x)$. Since it can't be $f(x)$, then it must be 1 . Therefore $f(x)$ and $p(x)$ are relatively prime. But then, by Bezout's identity, there exist $a(x), b(x) \in \mathbb{Z}[x]$ such that

$$
a(x) f(x)+b(x) p(x)=1
$$

But then

$$
a(x) f(x) q(x)+b(x) p(x) q(x)=q(x)
$$

We have $f(x) \mid a(x) f(x) q(x)$ because $f(x) \mid f(x)$, and we have $f(x) \mid b(x) p(x) q(x)$ because $f(x) \mid p(x) q(x)$. Therefore $f(x) \mid q(x)$, which is what we wanted to prove.
7. The Rational Root Theorem. Let

$$
p(x)=a_{n} x^{n} a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x],
$$

where $a_{n} \neq 0$. Prove that if $p(r / s)=0$, where $\operatorname{gcd}(r, s)=1$, then $r \mid a_{0}$ and $s \mid a_{n}$.

Solution 7.

$$
p(r / s)=a_{n}\left(\frac{r}{s}\right)^{n}+a_{n-1}\left(\frac{r}{s}\right)^{n-1}+\cdots+a_{1}\left(\frac{r}{s}\right)+a_{0}=0
$$

Then

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1} s+a_{n-2} r^{n-2} s^{2}+\cdots+a_{2} r^{2} s^{n-2}+a_{1} r s^{n-1}+a_{0} s^{n}=0 \tag{1}
\end{equation*}
$$

Now if you look at the equation modulo s we have

$$
a_{n} r^{n} \equiv 0 \bmod s
$$

Therefore $s \mid a_{n} r^{n}$. Since $\operatorname{gcd}(r, s)=1$, then $s \mid a_{n}$.
Similarly, looking at (1) modulo r we get

$$
a_{0} s^{n} \equiv 0 \bmod r
$$

Therefore $r \mid a_{0}$.
8. Cyclotomic Polynomials. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is called the cyclotomic polynomial. Show that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} for any prime p.
Solution 8. Consider $\Phi_{p}(x+1)$:

$$
\begin{aligned}
\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{x} & =\frac{x^{p}+\binom{p}{1} x^{p-1}+\binom{p}{2} x^{p-2}+\cdots+\binom{p}{p-1} x+1-1}{x} \\
& =x^{p-1}+\binom{p}{1} x^{p-2}+\binom{p}{2} x^{p-3}+\cdots+\binom{p}{p-2} x+\binom{p}{p-1}
\end{aligned}
$$

Every coefficient that's not the leading coefficient has the form $\frac{p!}{k!(p-k)!}$ for some integer $1 \leq k \leq p-1$. Since k ! and $(p-k)$! are not multiples of p but p ! is, then $\binom{p}{k}$ is a multiple of p. Therefore, every non-leading coefficient is a multiple of p. Furthermore, the constant term is p which is not a multiple of p^{2}. By Eisenstein's criterion $\Phi_{p}(x+1)$ is irreducible, but then $\Phi_{p}(x)$ is also irreducible.
9. Let $p(x)$ and $q(x)$ be polynomials in $R[x]$, where R is a commutative ring with identity. Prove that $\operatorname{deg}(p(x)+q(x)) \leq \max (\operatorname{deg} p(x), \operatorname{deg} q(x))$.

Solution 9. Suppose $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ and $q(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}$ with $a_{n} \neq 0$ and $b_{m} \neq 0$. We may assume without loss of generality that $n \geq m$ because R is commutative. If $n \neq m$, then
$p(x)+q(x)=a_{n} x^{n}+\cdots+a_{m+1} x^{m+1}+\left(a_{m}+b_{m}\right) x^{m}+\left(a_{m-1}+b_{m-1}\right) x^{m-1}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)$.
Since $a_{n} \neq 0$, then the degree of $p(x)+q(x)$ is n, which is the same as the max of $(\operatorname{deg}(p(x)), \operatorname{deg}(q(x)))$. If $n=m$, then

$$
p(x)+q(x)=\left(a_{n}+b_{n}\right) x^{n}+\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)
$$

If $a_{n}+b_{n} \neq 0$, then the degree of $p(x)+q(x)$ is n, which is the same as the max of $(\operatorname{deg}(p(x)), \operatorname{deg}(q(x))$. If $a_{n}+b_{n}=0$, then the degree is at most $n-1$, which is smaller than the max of $(\operatorname{deg}(p(x)), \operatorname{deg}(q(x))$. In all cases we have

$$
\operatorname{deg}(p(x)+q(x)) \leq \max (\operatorname{deg} p(x), \operatorname{deg} q(x))
$$

10. We call a polynomial $p(x) \in \mathbb{Z}_{2}[x]$ perfect if the sum of its divisors $\sigma(p(x))$ equals $p(x)$. For example $x^{2}+x$ is perfect because $\sigma\left(x^{2}+x\right)=1+x+(x+1)+\left(x^{2}+x\right)=x^{2}+x \bmod 2$. Suppose $p(x)$ is perfect. Prove that $x \mid p(x)$ if and only if $(x+1) \mid p(x)$.

Solution 10. For notation purposes, let $\sigma(f(x))$ be the sum of the divisors of the polynomial $f(x) \in$ $\mathbb{Z}_{2}[x]$. It is useful to use that σ is multiplicative, i.e., if $a(x), b(x)$ are relatively prime, then $\sigma(a(x) b(x))=$ $\sigma(a(x)) \sigma(b(x))$.
Suppose $x \mid p(x)$. We want to show that $(x+1) \mid p(x)$. Note that this is equivalent to showing $p(1)=0$. Consider the factorization of $p(x)$, i.e.,

$$
p(x)=x^{k} p_{1}(x)^{\alpha_{1}} p_{2}(x)^{\alpha_{2}} \cdots p_{r}(x)^{\alpha_{r}}
$$

Since $p(x)$ is perfect, then $\sigma(p(x))=p(x)$, but also

$$
\sigma(p(x))=\sigma\left(x^{k}\right) \prod_{i=1}^{r} \sigma\left(p_{i}(x)^{\alpha_{i}}\right)=\left(1+x+x^{2}+\cdots+x^{k}\right) \prod_{i=1}^{r}\left(1+p_{i}(x)+p_{i}(x)^{2}+\cdots+p_{i}(x)^{\alpha_{i}}\right)
$$

If k is odd, then $a(x)=1+x+x^{2}+\cdots+x^{k}$ satisfies $a(1)=0$. Therefore, at $x=1, \sigma(p(x))=0$, so $p(1)=0$. This implies $(x+1) \mid p(x)$ whenever k is odd. Let's assume k is even. We have x^{k} is relatively prime with $1+x+\cdots+x^{k}$, so $x^{k} \mid \sigma\left(\prod_{i=1}^{r} p_{i}(x)^{\alpha_{i}}\right)$. Therefore, (from problem 6), there is an i such that $x \mid \sigma\left(p_{i}(x)^{\alpha_{i}}\right)$.
But that means that when $x=0$, we have

$$
\sigma\left(\left(p_{i}(0)^{\alpha_{i}}\right)=1+p_{i}(0)+p_{i}(0)^{2}+\cdots+p_{i}(0)^{\alpha_{i}}=0 \bmod 2\right.
$$

Therefore $p_{i}(0)=1$ and α_{i} is odd. If $p_{i}(1)=1$, then $\sigma\left(p_{i}(1)^{\alpha_{i}}\right)=0$ because α_{i} is odd. But that means $\sigma(p(1))=0$, which means $p(1)=0$. This is a contradiction. Therefore $p_{i}(1)=0$. But $p_{i}(x) \mid p(x)$, therefore $p(1)=0$. Therefore $(x+1) \mid p(x)$.
The proof that $(x+1) \mid p(x)$ implies $x \mid p(x)$ is analogous.

