## Homework 3

Most problems below are from Judson.

- 1. The Gaussian integers,  $\mathbb{Z}[i]$ , are a UFD. Factor each of the following elements in  $\mathbb{Z}[i]$  into a product of irreducibles.
  - (a) 5
  - (b) 1 + 3i
  - (c) 6 + 8i
  - (d) 2
- 2. Let D be an integral domain.
  - (a) Prove that  $F_D$  is an abelian group under the operation of addition.
  - (b) Show that the operation of multiplication is well-defined in the field of fractions,  $F_D$ .
  - (c) Verify the associative and commutative properties for multiplication in  $F_D$ .
- 3. Prove or disprove: Any subring of a field F containing 1 is an integral domain.
- 4. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.
- 5. Let p be prime and denote the field of fractions of  $\mathbb{Z}_p[x]$  by  $\mathbb{Z}_p(x)$ . Prove that  $\mathbb{Z}_p(x)$  is an infinite field of characteristic p.
- 6. Let  $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$ 
  - (a) Prove that  $\mathbb{Z}[\sqrt{2}]$  is an integral domain.
  - (b) Find all of the units in  $\mathbb{Z}[\sqrt{2}]$ .
  - (c) Determine the field of fractions of  $\mathbb{Z}[\sqrt{2}]$ .
  - (d) Prove that  $\mathbb{Z}[\sqrt{2}i]$  is a Euclidean domain under the Euclidean valuation  $\nu(a + b\sqrt{2}i) = a^2 + 2b^2$ .
- 7. Let D be a Euclidean domain with Euclidean valuation  $\nu$ . If u is a unit in D, show that  $\nu(u) = \nu(1)$ .
- 8. An ideal of a commutative ring R is said to be **finitely generated** if there exist elements  $a_1, \ldots, a_n$  in R such that every element  $r \in R$  can be written as  $a_1r_1 + \cdots + a_nr_n$  for some  $r_1, \ldots, r_n$  in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.
- 9. Let R be a PID. Let P be a prime ideal of R. Prove that R/P is a PID.
- 10. (a) Prove that  $\mathbb{Z}[i]/\langle 1+i\rangle$  is a field of order 2.
  - (b) Let  $q \in \mathbb{Z}$  be a prime with  $q \equiv 3 \mod 4$ . Prove that  $\mathbb{Z}[i]/\langle q \rangle$  is a field with  $q^2$  elements.