## Homework 3

Most problems below are from Judson.

1. The Gaussian integers, $\mathbb{Z}[i]$, are a UFD. Factor each of the following elements in $\mathbb{Z}[i]$ into a product of irreducibles.
(a) 5
(b) $1+3 i$
(c) $6+8 i$
(d) 2
2. Let $D$ be an integral domain.
(a) Prove that $F_{D}$ is an abelian group under the operation of addition.
(b) Show that the operation of multiplication is well-defined in the field of fractions, $F_{D}$.
(c) Verify the associative and commutative properties for multiplication in $F_{D}$.
3. Prove or disprove: Any subring of a field $F$ containing 1 is an integral domain.
4. Prove or disprove: If $D$ is an integral domain, then every prime element in $D$ is also irreducible in $D$.
5. Let $p$ be prime and denote the field of fractions of $\mathbb{Z}_{p}[x]$ by $\mathbb{Z}_{p}(x)$. Prove that $\mathbb{Z}_{p}(x)$ is an infinite field of characteristic $p$.
6. Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$.
(a) Prove that $\mathbb{Z}[\sqrt{2}]$ is an integral domain.
(b) Find all of the units in $\mathbb{Z}[\sqrt{2}]$.
(c) Determine the field of fractions of $\mathbb{Z}[\sqrt{2}]$.
(d) Prove that $\mathbb{Z}[\sqrt{2} i]$ is a Euclidean domain under the Euclidean valuation $\nu(a+b \sqrt{2} i)=a^{2}+2 b^{2}$.
7. Let $D$ be a Euclidean domain with Euclidean valuation $\nu$. If $u$ is a unit in $D$, show that $\nu(u)=\nu(1)$.
8. An ideal of a commutative ring $R$ is said to be finitely generated if there exist elements $a_{1}, \ldots, a_{n}$ in $R$ such that every element $r \in R$ can be written as $a_{1} r_{1}+\cdots+a_{n} r_{n}$ for some $r_{1}, \ldots, r_{n}$ in $R$. Prove that $R$ satisfies the ascending chain condition if and only if every ideal of $R$ is finitely generated.
9. Let $R$ be a PID. Let $P$ be a prime ideal of $R$. Prove that $R / P$ is a PID.
10. (a) Prove that $\mathbb{Z}[i] /\langle 1+i\rangle$ is a field of order 2.
(b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \bmod 4$. Prove that $\mathbb{Z}[i] /\langle q\rangle$ is a field with $q^{2}$ elements.
