Homework 3 Solutions

Enrique Trevino

Most problems below are from Judson.

1.

The Gaussian integers, Z[i], are a UFD. Factor each of the following elements in Z[i] into a product of
irreducibles.

(a) 5

(b) 1+ 3

(c) 6+8i

(d) 2

Solution 1.

(a) 5= (2+1i)(2—1)

(b) 1+3i=(1+i)(2+1)

(€) 6+8i=2(3+4i) = (1+i)(1—i)(3+4i) = (1+i)(1 —i)(2+1)2.
(d) 2=(1+14)(1—1)

Let D be an integral domain.

(a) Prove that Fp is an abelian group under the operation of addition.
(b) Show that the operation of multiplication is well-defined in the field of fractions, Fp.

(¢) Verify the associative and commutative properties for multiplication in Fp.
Solution 2. Recall that the operations are (a,b) + (¢,d) = (ad + bc, bd), and (a,b) - (¢,d) = (ac, bd).
(a) Commutativity is inherited from D, since ad = da, bc = cb, bd = db, ad + bc = be + ad, so
(ad + be, bd) = (cb + da,db) = (¢, d) + (a, b).
Associativity is because the following two are equal:
((a,b) + (¢, d)) + (e, f) = (ad + be, bd) + (e, f) = (adf + bef + bde, bdf ),

(a,b) + ((c,d) + (e, f)) = (a,b) + (cf + de,df) = (adf + bef + bde, bdf).
The identity is (0,1). Indeed (a,b) + (0,1) = (a-14+b-0,b-1) = (a,b). The inverse of (a,b) is
(—a,b), indeed (a,b) + (—a,b) = (ab+ (—ab),b?) = (0,b%) = (0,1). The last equality is because
(a,b) = (¢, d) if ad = be and we have 0 -1 = b? - 0. Therefore, it’s an abelian group.

(b) Suppose (a,b) ~ (a',V'), (c,d) ~ (¢/,d'), i.e. ab' = a'b,ed’ = 'd. We want to show (a,b) - (c,d) ~
(a',b) - (¢,d). We want to show (ac,bd) ~ (a’'c’,b'd"), but for that we only need to verify
act/d’ = a/c’bd and this is true because ab’ = a’b and cd’ = d.

(c) We have

((a,0) - (¢,d)) - (e, f) = (ac, bd) - (e, f) = (ace, bdf),
and
(a,0) - ((¢,d) - (e, ) = (a,b) - (ce, df) = (ace, bdf).

Therefore, the operation is associative.
(a,b) - (¢,d) = (ac,bd) = (ca,db = (¢,d) - (a,b).

Therefore, it is commutative.



3. Prove or disprove: Any subring of a field F' containing 1 is an integral domain.

Solution 3. Let D be a subring of F' with identity. To be an integral domain we need to show D
is commutative and that it has no zero divisors. Since F is a field, it is commutative, therefore D is
commutative. Suppose ab = 0 with a,b € D. Since D C F, then a,b € F. Suppose a # 0. Then there
is a=! € F. Therefore a=!(ab) = b. But the product is also 0. Therefore b = 0.

Alternatively, one could see that if ab = 0 with a,b # 0, then there would be such a solution in F. But
F' is an integral domain. Contradiction!

. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.

Solution 4. Suppose p € D is prime. Suppose p is not irreducible, so p = ab for some nonunits a, b.
We know plab, so pla or p|b. If p|a, then a = pk. Therefore p = ab = (pk)b = p(kb). Therefore kb = 1.
Therefore b is a unit. Therefore p is irreducible.

. Let p be prime and denote the field of fractions of Z,[x] by Z,(z). Prove that Z,(x) is an infinite field
of characteristic p.

Solution 5. Let g(x) € Zy[z]. Then ¢(z) = apz"™ + ap_12" 1+ +arz + ag for some a; € Z,. Then
p-q(x) = (app)x™ + (an—1p)x" ' + - + (a1p)z + (agp) = 0 since a;p = 0 mod p. Therefore, Z,[z] has
characteristic p.

That Z,[z] is infinite comes from the fact that it contains 1,1+ x,1 + 2 + 2%, -+, which are infinitely
many elements.

. Let Z[v2] = {a+bV/2: a,b € Z}.

(a) Prove that Z[/2] is an integral domain.

(b) Find all of the units in Z[v/2].

(c) Determine the field of fractions of Z[v/2].

(d) Prove that Z[/2i] is a Euclidean domain under the Euclidean valuation v(a 4 bv/2i) = a? 4 2b%.

Solution 6.

(a) Since Q(v/2) is a field, then Z[v/2] is an integral domain. Indeed, if a + bi was a zero divisor in
Z[/2], then it would also be a zero divisor in Q[v/2].

(b) Let N(a+ bv/2) = |a? — 2b%|. Note

N((a+bV2)(c+ dv2)) = N((ac + 2bd) + (ad + be)v/2)

= |(ac + 2bd)* — 2(ad + bc)?| = |a®c® + 4abed + 4b*d* — 2a°d? — 4abed — 2b%¢?,

and
N(a+bV2)N(c+dv?2) = |a® — 20%||c? — 2d?| = |a®c® + 4b%d? — 2b%c? — 2a2d?|

Therefore N((a + bi)(c+ di)) = N(a+ bi)N(c+ di).

In particular, if u is a unit, we have N(a + bi) = N((a + bi)u) = N(a + bi)N(u). Therefore
N(u) =1 (unless N(a+ bi) = 0, which means a = b = 0 because if at least one of a,b it not zero
and a? — 2b? = 0, then /2 € Q, which is impossible).

Therefore, we are looking for solutions to the equation |a? — 2b?| = 1. The equation a? — 2b* = 1
is a Pell equation. One solution is a = 3,b = 2. From this, we can consider (3 + 2v/2)". Since
N(342v/2) =1, then N((3+2v2)") = 1. All of these are units (and one can show that they are
the only units satisfying a® — 20> = 1. To have a® — 2> = —1, we can choose ¢ = b = 1. Then
(1++v/2)(3 +2v2)" are all units. In fact (3 4+ 2v/2) = (1 + v/2)2. Therefore, the units are all the
powers of (14 \/?) But we must also consider their conjugates, their negatives and the negatives
of their conjugates. For example, 3 +2v/2,3 —21/2, —3 + 21/2, —3 — 21/2. These are all the units.



(c) The elements have the form ‘;isg, ie.

a+bvV2  (a+bvV2)(c—dV?2) ac—2bd fe@[f}

c+dvV2 c? — 2d? T2 — 2d2 2d2

Let p/q+ (r/s)i € Q[v2], i.e., a,b,c,d € Z with ¢,d # 0. We want to find a, b, ¢, d such that

ac — 2bd bc—ad s+ qryv/2 $2 + ¢%rs
o, L2 - \[ ps+aqrv2 _ pg q2 \f
c? —2d —2d qs q3s

Let d = 0. Let ¢ = gs. We want ac = pgs® and bc = ¢?rs, so a = ps and b = gr. Grabbing
a =ps,b=qr,c=qs,d =0 we have

a+ bi ac—2bd bc—ad ac  be
ctdi  E-2 V2= gt a2 *+ f 7+ f

Therefore Q[v/2] = Friva)-
(d) Let a + bv/2i, ¢+ dv/2i € Z[\/2i], with ¢, d not both zero.

a+bv2i  (a+bv2i)(c—dv2i) ac+2bd+ be — ad J5i
c+dv2i 2+ 2d2 T4 T 22’

ac+2bd d bec—ad

g, and o, respectively. Then there exist rationals

Let m,n be the closest integers to
r,s < 1/2 such that

a—|—bﬁi_ . .
cr e (m +nV2i) + (r + sv/20).

Then

a + bV2i = (m + nv/2i)(c + dvV2i) + (r + 5v/2i)(c + dV/2i)
= (m +nv2i)(c + dvV'2i) + ((rc + 2ds) + (sc + rd)V/2i).

Since a +bv/2i € Z[\/2i] and (m+n+/2i)(c+dv/2i) € Z[v/2i], then (r +sv/2i)(c+d\/2i) € Z[/2i].

But then we have our division algorithm. Note that

v((r + sV2i)(c + dV2i)) = (% + 25%)(2 + 2d°) < ((;)2 +2 (;) 2) v(c+ dv/2i)

= %1/(0 +dV2i) < v(c+ dV2i).

7. Let D be a Euclidean domain with Euclidean valuation v. If u is a unit in D, show that v(u) = v(1).

Solution 7. The rules are that v(a) < v(ab) for any nonzero b and that for any a,b # 0, there exist
g, such that a = bg +r with r = 0 or v(r) < v(b). Let u be a unit. Then u # 0. Then 1 = uu~!. But
v(u) < v(uu=t), so v(u) < v(1). Similarly v(1) < v(1-u) = v(u). Therefore v(1) < v(u). Therefore

v(1) = v(u).

8. An ideal of a commutative ring R is said to be finitely generated if there exist elements aq,...,a,
in R such that every element r € R can be written as a1r1 + - - - + a, 7, for some r,...,r, in R. Prove
that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

Solution 8. Let’s first prove that if R satisfies the ascending chain condition, then every ideal of R
is finitely generated. Let I be a nonzero ideal (the zero ideal is finitely generated since it’s {0} = (0)).
Let a1 be a nonzero element of I. If I = {aq), then I is finitely generated. If not, then Iy = (a;) is a
subset of I. Now consider ay € T\ I} (an element of I that is not in I;). Let Iy = {a1,a92). If I = I,



10.

then T is finitely generated. Otherwise, there exists ag € I\ Is. Let I3 = (a1, as,as). We can continue
this process. So we have

L CIL,Clz---.
By the ascending chain condition, there is an N such that for all n > N, I, = Iy. But if Iy41 = Iy
that means that there are no elements of I not in I, therefore I = {(a1,as,...,an), so I is finitely
generated.

For the converse, suppose every ideal of R is finitely generated. Now consider an ascending chain of
ideals
LCLCI3C- .

o0
As proved in class I = U I; is an ideal. But since every ideal is finitely generated, then I =

i=1
(a1,a2,...,a5). But then, for ¢ = 1,2,3,...,k, a; € I;, for some positive integer j;. Let N =
max{j1,j2,...,jk}. Then a; € I;, C In because j; < N. Therefore

I=(ai,aq,...,a) C In.
Therefore I,, = Iy for all n > N.

Let R be a PID. Let P be a prime ideal of R. Prove that R/P is a PID.

Solution 9. Let I be a nonzero ideal of R/P (the zero ideal is principal). The elements of I are of
the form r + P for some r € P. Let J = {r|r+ P € I}. Let’s show J is an ideal of R. Let j € J and
seJ,thenj+Pelands+Pel,so(j+P)—(s+P)el.But (j+P)—(s+P)=(j—s)+P.
Therefore j —s € J. If r € R, then rj + P = (r + P)(j + P) € I. Therefore rj € J. Therefore J is
an ideal of R. Since R is a PID, then J = (j) for some j € J. But then for any i + P € I, i € (j), so
i=jkforke R, so(i+P)=(k+P)(j+P),so (i+ P) e (j+ P). Therefore I = (< j+ P).

The only thing left to do to prove that R/P is a PID is to confirm that it is an integral domain.
Suppose that (i + P)(j + P) =0. Then ij + P =0, so ij € P. Since P is a prime ideal, then i € P or
j € P. In the first case i + P = 0, in the second j + P = 0. Therefore R/P is an integral domain.

(a) Prove that Z[i]/(1 + 4) is a field of order 2.

(b) Let ¢ € Z be a prime with ¢ = 3 mod 4. Prove that Z[i]/{q) is a field with ¢* elements.
Solution 10.

(a) Let’s illustrate by doing the division algorithm on 7 + 12¢ with 1 + 4.

7T412i  (T+12)(1—4i) 1945 19 5 , 11
1+ 2 2 g toi=0+2)+ {5+

Therefore _
7412 = (1+4)(9 + 20) + (1 +14) (2+2i> = (L+4)(9 + 21) + 4.

Therefore 7+ 12i =4 mod (1 + ).

In general,
a+bi  (a+bi)(1—1) a+b+b—a.
= = i.
1474 2 2 2
If a,b are both of the same parity, then GTH’ and I’_T“ are integers, so a + bi € (1 +4). If a and b

have different parity, then

b—1 b—a—1 11
a+bi=<a+2 + ; >(1+i)+(1+i)(2+2z‘):(c+di)(1+z‘)+z‘,

for ¢,d € Z. Therefore a 4+ bi = i mod (1 + ). This means that Z[i]/(1 + i) has two elements
{0,i}. A ring with two elements is a field of order 2.



(b) Since ¢ = 3 mod 4 and q is prime, then ¢ is irreducible in Z[i], so {¢) is a maximal ideal (indeed,
if {(¢) C I C ZJi], then because Z][i] is a PID, I = (i), but then i|q, so i is a unit or ¢ is associate
to q, i.e. I = Z[i] or I = (q)). Therefore Z[i]/{q) is a field. Now, the reasons it has ¢* elements
is that for any a,b € Z,, a + bi is different modulo (¢) because if a # ¢ mod ¢ and b # d mod g,
then (a — ¢) + (b — d)i # 0 mod q. Therefore, we have at least ¢* distinct elements in Z[i]/(g).
The reasons we don’t have more is that with ¢* + 1 elements of Z[i], by Pigeonhole principle, two
of them must satisfy a = ¢ mod g and b = d mod ¢, but then a + bi = ¢ + di mod q. Therefore,
there can’t be more than ¢? elements, so the field has precidely ¢? elements.



