
Homework 3 Solutions

Enrique Treviño

Most problems below are from Judson.

1. The Gaussian integers, Z[i], are a UFD. Factor each of the following elements in Z[i] into a product of
irreducibles.

(a) 5

(b) 1 + 3i

(c) 6 + 8i

(d) 2

Solution 1.

(a) 5 = (2 + i)(2− i)
(b) 1 + 3i = (1 + i)(2 + i)

(c) 6 + 8i = 2(3 + 4i) = (1 + i)(1− i)(3 + 4i) = (1 + i)(1− i)(2 + i)2.

(d) 2 = (1 + i)(1− i)

2. Let D be an integral domain.

(a) Prove that FD is an abelian group under the operation of addition.

(b) Show that the operation of multiplication is well-defined in the field of fractions, FD.

(c) Verify the associative and commutative properties for multiplication in FD.

Solution 2. Recall that the operations are (a, b) + (c, d) = (ad+ bc, bd), and (a, b) · (c, d) = (ac, bd).

(a) Commutativity is inherited from D, since ad = da, bc = cb, bd = db, ad+ bc = bc+ ad, so

(ad+ bc, bd) = (cb+ da, db) = (c, d) + (a, b).

Associativity is because the following two are equal:

((a, b) + (c, d)) + (e, f) = (ad+ bc, bd) + (e, f) = (adf + bcf + bde, bdf),

(a, b) + ((c, d) + (e, f)) = (a, b) + (cf + de, df) = (adf + bcf + bde, bdf).

The identity is (0, 1). Indeed (a, b) + (0, 1) = (a · 1 + b · 0, b · 1) = (a, b). The inverse of (a, b) is
(−a, b), indeed (a, b) + (−a, b) = (ab + (−ab), b2) = (0, b2) = (0, 1). The last equality is because
(a, b) = (c, d) if ad = bc and we have 0 · 1 = b2 · 0. Therefore, it’s an abelian group.

(b) Suppose (a, b) ∼ (a′, b′), (c, d) ∼ (c′, d′), i.e. ab′ = a′b, cd′ = c′d. We want to show (a, b) · (c, d) ∼
(a′, b′) · (c′, d′). We want to show (ac, bd) ∼ (a′c′, b′d′), but for that we only need to verify
acb′d′ = a′c′bd and this is true because ab′ = a′b and cd′ = c′d.

(c) We have
((a, b) · (c, d)) · (e, f) = (ac, bd) · (e, f) = (ace, bdf),

and
(a, b) · ((c, d) · (e, f)) = (a, b) · (ce, df) = (ace, bdf).

Therefore, the operation is associative.

(a, b) · (c, d) = (ac, bd) = (ca, db = (c, d) · (a, b).

Therefore, it is commutative.

1



3. Prove or disprove: Any subring of a field F containing 1 is an integral domain.

Solution 3. Let D be a subring of F with identity. To be an integral domain we need to show D
is commutative and that it has no zero divisors. Since F is a field, it is commutative, therefore D is
commutative. Suppose ab = 0 with a, b ∈ D. Since D ⊆ F , then a, b ∈ F . Suppose a 6= 0. Then there
is a−1 ∈ F . Therefore a−1(ab) = b. But the product is also 0. Therefore b = 0.

Alternatively, one could see that if ab = 0 with a, b 6= 0, then there would be such a solution in F . But
F is an integral domain. Contradiction!

4. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.

Solution 4. Suppose p ∈ D is prime. Suppose p is not irreducible, so p = ab for some nonunits a, b.
We know p|ab, so p|a or p|b. If p|a, then a = pk. Therefore p = ab = (pk)b = p(kb). Therefore kb = 1.
Therefore b is a unit. Therefore p is irreducible.

5. Let p be prime and denote the field of fractions of Zp[x] by Zp(x). Prove that Zp(x) is an infinite field
of characteristic p.

Solution 5. Let q(x) ∈ Zp[x]. Then q(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 for some ai ∈ Zp. Then
p · q(x) = (anp)x

n + (an−1p)x
n−1 + · · ·+ (a1p)x+ (a0p) ≡ 0 since aip ≡ 0 mod p. Therefore, Zp[x] has

characteristic p.

That Zp[x] is infinite comes from the fact that it contains 1, 1 + x, 1 + x+ x2, · · · , which are infinitely
many elements.

6. Let Z[
√

2 ] = {a+ b
√

2 : a, b ∈ Z}.

(a) Prove that Z[
√

2 ] is an integral domain.

(b) Find all of the units in Z[
√

2 ].

(c) Determine the field of fractions of Z[
√

2 ].

(d) Prove that Z[
√

2i] is a Euclidean domain under the Euclidean valuation ν(a+ b
√

2 i) = a2 + 2b2.

Solution 6.

(a) Since Q(
√

2) is a field, then Z[
√

2] is an integral domain. Indeed, if a + bi was a zero divisor in
Z[
√

2], then it would also be a zero divisor in Q[
√

2].

(b) Let N(a+ b
√

2) = |a2 − 2b2|. Note

N((a+ b
√

2)(c+ d
√

2)) = N((ac+ 2bd) + (ad+ bc)
√

2)

= |(ac+ 2bd)2 − 2(ad+ bc)2| = |a2c2 + 4abcd+ 4b2d2 − 2a2d2 − 4abcd− 2b2c2|,

and
N(a+ b

√
2)N(c+ d

√
2) = |a2 − 2b2||c2 − 2d2| = |a2c2 + 4b2d2 − 2b2c2 − 2a2d2|

Therefore N((a+ bi)(c+ di)) = N(a+ bi)N(c+ di).

In particular, if u is a unit, we have N(a + bi) = N((a + bi)u) = N(a + bi)N(u). Therefore
N(u) = 1 (unless N(a+ bi) = 0, which means a = b = 0 because if at least one of a, b it not zero
and a2 − 2b2 = 0, then

√
2 ∈ Q, which is impossible).

Therefore, we are looking for solutions to the equation |a2 − 2b2| = 1. The equation a2 − 2b2 = 1
is a Pell equation. One solution is a = 3, b = 2. From this, we can consider (3 + 2

√
2)n. Since

N(3 + 2
√

2) = 1, then N((3 + 2
√

2)n) = 1. All of these are units (and one can show that they are
the only units satisfying a2 − 2b2 = 1. To have a2 − 2b2 = −1, we can choose a = b = 1. Then
(1 +

√
2)(3 + 2

√
2)n are all units. In fact (3 + 2

√
2) = (1 +

√
2)2. Therefore, the units are all the

powers of (1 +
√

2). But we must also consider their conjugates, their negatives and the negatives
of their conjugates. For example, 3 + 2

√
2, 3− 2

√
2,−3 + 2

√
2,−3− 2

√
2. These are all the units.
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(c) The elements have the form a+b
√
2

c+d
√
2
, i.e.

a+ b
√

2

c+ d
√

2
=

(a+ b
√

2)(c− d
√

2)

c2 − 2d2
=
ac− 2bd

c2 − 2d2
+

bc− ad
c2 − 2d2

√
2 ∈ Q[

√
2].

Let p/q + (r/s)i ∈ Q[
√

2], i.e., a, b, c, d ∈ Z with c, d 6= 0. We want to find a, b, c, d such that

ac− 2bd

c2 − 2d2
+

bc− ad
c2 − 2d2

√
2 =

p

q
+
r

s

√
2 =

ps+ qr
√

2

qs
=
pqs2 + q2rs

√
2

q2s2
.

Let d = 0. Let c = qs. We want ac = pqs2 and bc = q2rs, so a = ps and b = qr. Grabbing
a = ps, b = qr, c = qs, d = 0 we have

a+ bi

c+ di
=
ac− 2bd

c2 − 2d2
+

bc− ad
c2 − 2d2

√
2 =

ac

c2
+
bc

c2

√
2 =

a

c
+
b

c

√
2 =

p

q
+
r

s

√
2.

Therefore Q[
√

2] = FZ[
√
2].

(d) Let a+ b
√

2i, c+ d
√

2i ∈ Z[
√

2i], with c, d not both zero.

a+ b
√

2i

c+ d
√

2i
=

(a+ b
√

2i)(c− d
√

2i)

c2 + 2d2
=
ac+ 2bd

c2 + 2d2
+

bc− ad
c2 + 2d2

√
2i.

Let m,n be the closest integers to ac+2bd
c2+2d2 , and bc−ad

c2+2d2 , respectively. Then there exist rationals
r, s ≤ 1/2 such that

a+ b
√

2i

c+ d
√

2i
= (m+ n

√
2i) + (r + s

√
2i).

Then

a+ b
√

2i = (m+ n
√

2i)(c+ d
√

2i) + (r + s
√

2i)(c+ d
√

2i)

= (m+ n
√

2i)(c+ d
√

2i) + ((rc+ 2ds) + (sc+ rd)
√

2i).

Since a+ b
√

2i ∈ Z[
√

2i] and (m+n
√

2i)(c+d
√

2i) ∈ Z[
√

2i], then (r+s
√

2i)(c+d
√

2i) ∈ Z[
√

2i].
But then we have our division algorithm. Note that

ν((r + s
√

2i)(c+ d
√

2i)) = (r2 + 2s2)(c2 + 2d2) ≤

((
1

2

)2

+ 2

(
1

2

)2
)
ν(c+ d

√
2i)

=
3

4
ν(c+ d

√
2i) < ν(c+ d

√
2i).

7. Let D be a Euclidean domain with Euclidean valuation ν. If u is a unit in D, show that ν(u) = ν(1).

Solution 7. The rules are that ν(a) ≤ ν(ab) for any nonzero b and that for any a, b 6= 0, there exist
q, r such that a = bq+ r with r = 0 or ν(r) < ν(b). Let u be a unit. Then u 6= 0. Then 1 = uu−1. But
ν(u) ≤ ν(uu−1), so ν(u) ≤ ν(1). Similarly ν(1) ≤ ν(1 · u) = ν(u). Therefore ν(1) ≤ ν(u). Therefore
ν(1) = ν(u).

8. An ideal of a commutative ring R is said to be finitely generated if there exist elements a1, . . . , an
in R such that every element r ∈ R can be written as a1r1 + · · ·+anrn for some r1, . . . , rn in R. Prove
that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

Solution 8. Let’s first prove that if R satisfies the ascending chain condition, then every ideal of R
is finitely generated. Let I be a nonzero ideal (the zero ideal is finitely generated since it’s {0} = 〈0〉).
Let a1 be a nonzero element of I. If I = 〈a1〉, then I is finitely generated. If not, then I1 = 〈a1〉 is a
subset of I. Now consider a2 ∈ I \ I1 (an element of I that is not in I1). Let I2 = 〈a1, a2〉. If I = I2,
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then I is finitely generated. Otherwise, there exists a3 ∈ I \ I2. Let I3 = 〈a1, a2, a3〉. We can continue
this process. So we have

I1 ⊆ I2 ⊆ I3 · · · .
By the ascending chain condition, there is an N such that for all n ≥ N , In = IN . But if IN+1 = IN
that means that there are no elements of I not in IN , therefore I = 〈a1, a2, . . . , aN 〉, so I is finitely
generated.

For the converse, suppose every ideal of R is finitely generated. Now consider an ascending chain of
ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · .

As proved in class I =

∞⋃
i=1

Ii is an ideal. But since every ideal is finitely generated, then I =

〈a1, a2, . . . , ak〉. But then, for i = 1, 2, 3, . . . , k, ai ∈ Iji for some positive integer ji. Let N =
max{j1, j2, . . . , jk}. Then ai ∈ Iji ⊆ IN because ji ≤ N . Therefore

I = 〈a1, a2, . . . , ak〉 ⊆ IN .

Therefore In = IN for all n ≥ N .

9. Let R be a PID. Let P be a prime ideal of R. Prove that R/P is a PID.

Solution 9. Let I be a nonzero ideal of R/P (the zero ideal is principal). The elements of I are of
the form r + P for some r ∈ P . Let J = {r | r + P ∈ I}. Let’s show J is an ideal of R. Let j ∈ J and
s ∈ J , then j + P ∈ I and s+ P ∈ I, so (j + P )− (s+ P ) ∈ I. But (j + P )− (s+ P ) = (j − s) + P .
Therefore j − s ∈ J . If r ∈ R, then rj + P = (r + P )(j + P ) ∈ I. Therefore rj ∈ J . Therefore J is
an ideal of R. Since R is a PID, then J = 〈j〉 for some j ∈ J . But then for any i+ P ∈ I, i ∈ 〈j〉, so
i = jk for k ∈ R, so (i+ P ) = (k + P )(j + P ), so (i+ P ) ∈ 〈j + P 〉. Therefore I = 〈< j + P 〉.
The only thing left to do to prove that R/P is a PID is to confirm that it is an integral domain.
Suppose that (i+ P )(j + P ) = 0. Then ij + P = 0, so ij ∈ P . Since P is a prime ideal, then i ∈ P or
j ∈ P . In the first case i+ P = 0, in the second j + P = 0. Therefore R/P is an integral domain.

10. (a) Prove that Z[i]/〈1 + i〉 is a field of order 2.

(b) Let q ∈ Z be a prime with q ≡ 3 mod 4. Prove that Z[i]/〈q〉 is a field with q2 elements.

Solution 10.

(a) Let’s illustrate by doing the division algorithm on 7 + 12i with 1 + i.

7 + 12i

1 + i
=

(7 + 12i)(1− i)
2

=
19 + 5i

2
=

19

2
+

5

2
i = (9 + 2i) +

(
1

2
+

1

2
i

)
.

Therefore

7 + 12i = (1 + i)(9 + 2i) + (1 + i)

(
1

2
+

1

2
i

)
= (1 + i)(9 + 2i) + i.

Therefore 7 + 12i ≡ i mod 〈1 + i〉.
In general,

a+ bi

1 + i
=

(a+ bi)(1− i)
2

=
a+ b

2
+
b− a

2
i.

If a, b are both of the same parity, then a+b
2 and b−a

2 are integers, so a+ bi ∈ 〈1 + i〉. If a and b
have different parity, then

a+ bi =

(
a+ b− 1

2
+
b− a− 1

2

)
(1 + i) + (1 + i)

(
1

2
+

1

2
i

)
= (c+ di)(1 + i) + i,

for c, d ∈ Z. Therefore a + bi ≡ i mod 〈1 + i〉. This means that Z[i]/〈1 + i〉 has two elements
{0, i}. A ring with two elements is a field of order 2.
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(b) Since q ≡ 3 mod 4 and q is prime, then q is irreducible in Z[i], so 〈q〉 is a maximal ideal (indeed,
if 〈q〉 ⊆ I ⊆ Z[i], then because Z[i] is a PID, I = 〈i〉, but then i|q, so i is a unit or i is associate
to q, i.e. I = Z[i] or I = 〈q〉). Therefore Z[i]/〈q〉 is a field. Now, the reasons it has q2 elements
is that for any a, b ∈ Zq, a + bi is different modulo 〈q〉 because if a 6≡ c mod q and b 6≡ d mod q,
then (a − c) + (b − d)i 6≡ 0 mod q. Therefore, we have at least q2 distinct elements in Z[i]/〈q〉.
The reasons we don’t have more is that with q2 + 1 elements of Z[i], by Pigeonhole principle, two
of them must satisfy a ≡ c mod q and b ≡ d mod q, but then a + bi ≡ c + di mod q. Therefore,
there can’t be more than q2 elements, so the field has precidely q2 elements.
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