Homework 3 Solutions

Enrique Treviño

Most problems below are from Judson.

1. The Gaussian integers, $\mathbb{Z}[i]$, are a UFD. Factor each of the following elements in $\mathbb{Z}[i]$ into a product of irreducibles.
(a) 5
(b) $1+3 i$
(c) $6+8 i$
(d) 2

Solution 1.
(a) $5=(2+i)(2-i)$
(b) $1+3 i=(1+i)(2+i)$
(c) $6+8 i=2(3+4 i)=(1+i)(1-i)(3+4 i)=(1+i)(1-i)(2+i)^{2}$.
(d) $2=(1+i)(1-i)$
2. Let D be an integral domain.
(a) Prove that F_{D} is an abelian group under the operation of addition.
(b) Show that the operation of multiplication is well-defined in the field of fractions, F_{D}.
(c) Verify the associative and commutative properties for multiplication in F_{D}.

Solution 2. Recall that the operations are $(a, b)+(c, d)=(a d+b c, b d)$, and $(a, b) \cdot(c, d)=(a c, b d)$.
(a) Commutativity is inherited from D, since $a d=d a, b c=c b, b d=d b, a d+b c=b c+a d$, so

$$
(a d+b c, b d)=(c b+d a, d b)=(c, d)+(a, b)
$$

Associativity is because the following two are equal:

$$
\begin{aligned}
& ((a, b)+(c, d))+(e, f)=(a d+b c, b d)+(e, f)=(a d f+b c f+b d e, b d f) \\
& (a, b)+((c, d)+(e, f))=(a, b)+(c f+d e, d f)=(a d f+b c f+b d e, b d f)
\end{aligned}
$$

The identity is $(0,1)$. Indeed $(a, b)+(0,1)=(a \cdot 1+b \cdot 0, b \cdot 1)=(a, b)$. The inverse of (a, b) is $(-a, b)$, indeed $(a, b)+(-a, b)=\left(a b+(-a b), b^{2}\right)=\left(0, b^{2}\right)=(0,1)$. The last equality is because $(a, b)=(c, d)$ if $a d=b c$ and we have $0 \cdot 1=b^{2} \cdot 0$. Therefore, it's an abelian group.
(b) Suppose $(a, b) \sim\left(a^{\prime}, b^{\prime}\right),(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, i.e. $a b^{\prime}=a^{\prime} b, c d^{\prime}=c^{\prime} d$. We want to show $(a, b) \cdot(c, d) \sim$ $\left(a^{\prime}, b^{\prime}\right) \cdot\left(c^{\prime}, d^{\prime}\right)$. We want to show $(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$, but for that we only need to verify $a c b^{\prime} d^{\prime}=a^{\prime} c^{\prime} b d$ and this is true because $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$.
(c) We have

$$
((a, b) \cdot(c, d)) \cdot(e, f)=(a c, b d) \cdot(e, f)=(a c e, b d f)
$$

and

$$
(a, b) \cdot((c, d) \cdot(e, f))=(a, b) \cdot(c e, d f)=(a c e, b d f)
$$

Therefore, the operation is associative.

$$
(a, b) \cdot(c, d)=(a c, b d)=(c a, d b=(c, d) \cdot(a, b)
$$

Therefore, it is commutative.
3. Prove or disprove: Any subring of a field F containing 1 is an integral domain.

Solution 3. Let D be a subring of F with identity. To be an integral domain we need to show D is commutative and that it has no zero divisors. Since F is a field, it is commutative, therefore D is commutative. Suppose $a b=0$ with $a, b \in D$. Since $D \subseteq F$, then $a, b \in F$. Suppose $a \neq 0$. Then there is $a^{-1} \in F$. Therefore $a^{-1}(a b)=b$. But the product is also 0 . Therefore $b=0$.
Alternatively, one could see that if $a b=0$ with $a, b \neq 0$, then there would be such a solution in F. But F is an integral domain. Contradiction!
4. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.

Solution 4. Suppose $p \in D$ is prime. Suppose p is not irreducible, so $p=a b$ for some nonunits a, b. We know $p \mid a b$, so $p \mid a$ or $p \mid b$. If $p \mid a$, then $a=p k$. Therefore $p=a b=(p k) b=p(k b)$. Therefore $k b=1$. Therefore b is a unit. Therefore p is irreducible.
5. Let p be prime and denote the field of fractions of $\mathbb{Z}_{p}[x]$ by $\mathbb{Z}_{p}(x)$. Prove that $\mathbb{Z}_{p}(x)$ is an infinite field of characteristic p.

Solution 5. Let $q(x) \in \mathbb{Z}_{p}[x]$. Then $q(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ for some $a_{i} \in \mathbb{Z}_{p}$. Then $p \cdot q(x)=\left(a_{n} p\right) x^{n}+\left(a_{n-1} p\right) x^{n-1}+\cdots+\left(a_{1} p\right) x+\left(a_{0} p\right) \equiv 0$ since $a_{i} p \equiv 0 \bmod p$. Therefore, $\mathbb{Z}_{p}[x]$ has characteristic p.
That $\mathbb{Z}_{p}[x]$ is infinite comes from the fact that it contains $1,1+x, 1+x+x^{2}, \cdots$, which are infinitely many elements.
6. Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$.
(a) Prove that $\mathbb{Z}[\sqrt{2}]$ is an integral domain.
(b) Find all of the units in $\mathbb{Z}[\sqrt{2}]$.
(c) Determine the field of fractions of $\mathbb{Z}[\sqrt{2}]$.
(d) Prove that $\mathbb{Z}[\sqrt{2} i]$ is a Euclidean domain under the Euclidean valuation $\nu(a+b \sqrt{2} i)=a^{2}+2 b^{2}$.

Solution 6.

(a) Since $\mathbb{Q}(\sqrt{2})$ is a field, then $\mathbb{Z}[\sqrt{2}]$ is an integral domain. Indeed, if $a+b i$ was a zero divisor in $\mathbb{Z}[\sqrt{2}]$, then it would also be a zero divisor in $\mathbb{Q}[\sqrt{2}]$.
(b) Let $N(a+b \sqrt{2})=\left|a^{2}-2 b^{2}\right|$. Note

$$
\begin{aligned}
N((a+b \sqrt{2})(c+d \sqrt{2})) & =N((a c+2 b d)+(a d+b c) \sqrt{2}) \\
& =\left|(a c+2 b d)^{2}-2(a d+b c)^{2}\right|=\left|a^{2} c^{2}+4 a b c d+4 b^{2} d^{2}-2 a^{2} d^{2}-4 a b c d-2 b^{2} c^{2}\right|
\end{aligned}
$$

and

$$
N(a+b \sqrt{2}) N(c+d \sqrt{2})=\left|a^{2}-2 b^{2}\right|\left|c^{2}-2 d^{2}\right|=\left|a^{2} c^{2}+4 b^{2} d^{2}-2 b^{2} c^{2}-2 a^{2} d^{2}\right|
$$

Therefore $N((a+b i)(c+d i))=N(a+b i) N(c+d i)$.
In particular, if u is a unit, we have $N(a+b i)=N((a+b i) u)=N(a+b i) N(u)$. Therefore $N(u)=1$ (unless $N(a+b i)=0$, which means $a=b=0$ because if at least one of a, b it not zero and $a^{2}-2 b^{2}=0$, then $\sqrt{2} \in \mathbb{Q}$, which is impossible).
Therefore, we are looking for solutions to the equation $\left|a^{2}-2 b^{2}\right|=1$. The equation $a^{2}-2 b^{2}=1$ is a Pell equation. One solution is $a=3, b=2$. From this, we can consider $(3+2 \sqrt{2})^{n}$. Since $N(3+2 \sqrt{2})=1$, then $N\left((3+2 \sqrt{2})^{n}\right)=1$. All of these are units (and one can show that they are the only units satisfying $a^{2}-2 b^{2}=1$. To have $a^{2}-2 b^{2}=-1$, we can choose $a=b=1$. Then $(1+\sqrt{2})(3+2 \sqrt{2})^{n}$ are all units. In fact $(3+2 \sqrt{2})=(1+\sqrt{2})^{2}$. Therefore, the units are all the powers of $(1+\sqrt{2})$. But we must also consider their conjugates, their negatives and the negatives of their conjugates. For example, $3+2 \sqrt{2}, 3-2 \sqrt{2},-3+2 \sqrt{2},-3-2 \sqrt{2}$. These are all the units.
(c) The elements have the form $\frac{a+b \sqrt{2}}{c+d \sqrt{2}}$, i.e.

$$
\frac{a+b \sqrt{2}}{c+d \sqrt{2}}=\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{c^{2}-2 d^{2}}=\frac{a c-2 b d}{c^{2}-2 d^{2}}+\frac{b c-a d}{c^{2}-2 d^{2}} \sqrt{2} \in \mathbb{Q}[\sqrt{2}]
$$

Let $p / q+(r / s) i \in \mathbb{Q}[\sqrt{2}]$, i.e., $a, b, c, d \in \mathbb{Z}$ with $c, d \neq 0$. We want to find a, b, c, d such that

$$
\frac{a c-2 b d}{c^{2}-2 d^{2}}+\frac{b c-a d}{c^{2}-2 d^{2}} \sqrt{2}=\frac{p}{q}+\frac{r}{s} \sqrt{2}=\frac{p s+q r \sqrt{2}}{q s}=\frac{p q s^{2}+q^{2} r s \sqrt{2}}{q^{2} s^{2}} .
$$

Let $d=0$. Let $c=q s$. We want $a c=p q s^{2}$ and $b c=q^{2} r s$, so $a=p s$ and $b=q r$. Grabbing $a=p s, b=q r, c=q s, d=0$ we have

$$
\frac{a+b i}{c+d i}=\frac{a c-2 b d}{c^{2}-2 d^{2}}+\frac{b c-a d}{c^{2}-2 d^{2}} \sqrt{2}=\frac{a c}{c^{2}}+\frac{b c}{c^{2}} \sqrt{2}=\frac{a}{c}+\frac{b}{c} \sqrt{2}=\frac{p}{q}+\frac{r}{s} \sqrt{2}
$$

Therefore $\mathbb{Q}[\sqrt{2}]=\mathbb{F}_{\mathbb{Z}[\sqrt{2}]}$.
(d) Let $a+b \sqrt{2} i, c+d \sqrt{2} i \in \mathbb{Z}[\sqrt{2} i]$, with c, d not both zero.

$$
\frac{a+b \sqrt{2} i}{c+d \sqrt{2} i}=\frac{(a+b \sqrt{2} i)(c-d \sqrt{2} i)}{c^{2}+2 d^{2}}=\frac{a c+2 b d}{c^{2}+2 d^{2}}+\frac{b c-a d}{c^{2}+2 d^{2}} \sqrt{2} i
$$

Let m, n be the closest integers to $\frac{a c+2 b d}{c^{2}+2 d^{2}}$, and $\frac{b c-a d}{c^{2}+2 d^{2}}$, respectively. Then there exist rationals $r, s \leq 1 / 2$ such that

$$
\frac{a+b \sqrt{2} i}{c+d \sqrt{2} i}=(m+n \sqrt{2} i)+(r+s \sqrt{2} i)
$$

Then

$$
\begin{aligned}
a+b \sqrt{2} i & =(m+n \sqrt{2} i)(c+d \sqrt{2} i)+(r+s \sqrt{2} i)(c+d \sqrt{2} i) \\
& =(m+n \sqrt{2} i)(c+d \sqrt{2} i)+((r c+2 d s)+(s c+r d) \sqrt{2} i)
\end{aligned}
$$

Since $a+b \sqrt{2} i \in \mathbb{Z}[\sqrt{2} i]$ and $(m+n \sqrt{2} i)(c+d \sqrt{2} i) \in \mathbb{Z}[\sqrt{2} i]$, then $(r+s \sqrt{2} i)(c+d \sqrt{2} i) \in \mathbb{Z}[\sqrt{2} i]$. But then we have our division algorithm. Note that

$$
\begin{aligned}
\nu((r+s \sqrt{2} i)(c+d \sqrt{2} i))=\left(r^{2}+2 s^{2}\right)\left(c^{2}+2 d^{2}\right) & \leq\left(\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)^{2}\right) \nu(c+d \sqrt{2} i) \\
& =\frac{3}{4} \nu(c+d \sqrt{2} i)<\nu(c+d \sqrt{2} i)
\end{aligned}
$$

7. Let D be a Euclidean domain with Euclidean valuation ν. If u is a unit in D, show that $\nu(u)=\nu(1)$.

Solution 7. The rules are that $\nu(a) \leq \nu(a b)$ for any nonzero b and that for any $a, b \neq 0$, there exist q, r such that $a=b q+r$ with $r=0$ or $\nu(r)<\nu(b)$. Let u be a unit. Then $u \neq 0$. Then $1=u u^{-1}$. But $\nu(u) \leq \nu\left(u u^{-1}\right)$, so $\nu(u) \leq \nu(1)$. Similarly $\nu(1) \leq \nu(1 \cdot u)=\nu(u)$. Therefore $\nu(1) \leq \nu(u)$. Therefore $\nu(1)=\nu(u)$.
8. An ideal of a commutative ring R is said to be finitely generated if there exist elements a_{1}, \ldots, a_{n} in R such that every element $r \in R$ can be written as $a_{1} r_{1}+\cdots+a_{n} r_{n}$ for some r_{1}, \ldots, r_{n} in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

Solution 8. Let's first prove that if R satisfies the ascending chain condition, then every ideal of R is finitely generated. Let I be a nonzero ideal (the zero ideal is finitely generated since it's $\{0\}=\langle 0\rangle$). Let a_{1} be a nonzero element of I. If $I=\left\langle a_{1}\right\rangle$, then I is finitely generated. If not, then $I_{1}=\left\langle a_{1}\right\rangle$ is a subset of I. Now consider $a_{2} \in I \backslash I_{1}$ (an element of I that is not in I_{1}). Let $I_{2}=\left\langle a_{1}, a_{2}\right\rangle$. If $I=I_{2}$,
then I is finitely generated. Otherwise, there exists $a_{3} \in I \backslash I_{2}$. Let $I_{3}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. We can continue this process. So we have

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \cdots
$$

By the ascending chain condition, there is an N such that for all $n \geq N, I_{n}=I_{N}$. But if $I_{N+1}=I_{N}$ that means that there are no elements of I not in I_{N}, therefore $I=\left\langle a_{1}, a_{2}, \ldots, a_{N}\right\rangle$, so I is finitely generated.
For the converse, suppose every ideal of R is finitely generated. Now consider an ascending chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

As proved in class $I=\bigcup_{i=1}^{\infty} I_{i}$ is an ideal. But since every ideal is finitely generated, then $I=$ $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$. But then, for $i=1,2,3, \ldots, k, a_{i} \in I_{j_{i}}$ for some positive integer j_{i}. Let $N=$ $\max \left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$. Then $a_{i} \in I_{j_{i}} \subseteq I_{N}$ because $j_{i} \leq N$. Therefore

$$
I=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle \subseteq I_{N}
$$

Therefore $I_{n}=I_{N}$ for all $n \geq N$.
9. Let R be a PID. Let P be a prime ideal of R. Prove that R / P is a PID.

Solution 9. Let I be a nonzero ideal of R / P (the zero ideal is principal). The elements of I are of the form $r+P$ for some $r \in P$. Let $J=\{r \mid r+P \in I\}$. Let's show J is an ideal of R. Let $j \in J$ and $s \in J$, then $j+P \in I$ and $s+P \in I$, so $(j+P)-(s+P) \in I$. But $(j+P)-(s+P)=(j-s)+P$. Therefore $j-s \in J$. If $r \in R$, then $r j+P=(r+P)(j+P) \in I$. Therefore $r j \in J$. Therefore J is an ideal of R. Since R is a PID, then $J=\langle j\rangle$ for some $j \in J$. But then for any $i+P \in I, i \in\langle j\rangle$, so $i=j k$ for $k \in R$, so $(i+P)=(k+P)(j+P)$, so $(i+P) \in\langle j+P\rangle$. Therefore $I=\langle<j+P\rangle$.
The only thing left to do to prove that R / P is a PID is to confirm that it is an integral domain. Suppose that $(i+P)(j+P)=0$. Then $i j+P=0$, so $i j \in P$. Since P is a prime ideal, then $i \in P$ or $j \in P$. In the first case $i+P=0$, in the second $j+P=0$. Therefore R / P is an integral domain.
10. (a) Prove that $\mathbb{Z}[i] /\langle 1+i\rangle$ is a field of order 2 .
(b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \bmod 4$. Prove that $\mathbb{Z}[i] /\langle q\rangle$ is a field with q^{2} elements.

Solution 10.

(a) Let's illustrate by doing the division algorithm on $7+12 i$ with $1+i$.

$$
\frac{7+12 i}{1+i}=\frac{(7+12 i)(1-i)}{2}=\frac{19+5 i}{2}=\frac{19}{2}+\frac{5}{2} i=(9+2 i)+\left(\frac{1}{2}+\frac{1}{2} i\right) .
$$

Therefore

$$
7+12 i=(1+i)(9+2 i)+(1+i)\left(\frac{1}{2}+\frac{1}{2} i\right)=(1+i)(9+2 i)+i
$$

Therefore $7+12 i \equiv i \bmod \langle 1+i\rangle$.
In general,

$$
\frac{a+b i}{1+i}=\frac{(a+b i)(1-i)}{2}=\frac{a+b}{2}+\frac{b-a}{2} i .
$$

If a, b are both of the same parity, then $\frac{a+b}{2}$ and $\frac{b-a}{2}$ are integers, so $a+b i \in\langle 1+i\rangle$. If a and b have different parity, then

$$
a+b i=\left(\frac{a+b-1}{2}+\frac{b-a-1}{2}\right)(1+i)+(1+i)\left(\frac{1}{2}+\frac{1}{2} i\right)=(c+d i)(1+i)+i,
$$

for $c, d \in \mathbb{Z}$. Therefore $a+b i \equiv i \bmod \langle 1+i\rangle$. This means that $\mathbb{Z}[i] /\langle 1+i\rangle$ has two elements $\{0, i\}$. A ring with two elements is a field of order 2.
(b) Since $q \equiv 3 \bmod 4$ and q is prime, then q is irreducible in $\mathbb{Z}[i]$, so $\langle q\rangle$ is a maximal ideal (indeed, if $\langle q\rangle \subseteq I \subseteq \mathbb{Z}[i]$, then because $\mathbb{Z}[i]$ is a PID, $I=\langle i\rangle$, but then $i \mid q$, so i is a unit or i is associate to q, i.e. $I=\mathbb{Z}[i]$ or $I=\langle q\rangle)$. Therefore $\mathbb{Z}[i] /\langle q\rangle$ is a field. Now, the reasons it has q^{2} elements is that for any $a, b \in \mathbb{Z}_{q}, a+b i$ is different modulo $\langle q\rangle$ because if $a \not \equiv c \bmod q$ and $b \not \equiv d \bmod q$, then $(a-c)+(b-d) i \not \equiv 0 \bmod q$. Therefore, we have at least q^{2} distinct elements in $\mathbb{Z}[i] /\langle q\rangle$. The reasons we don't have more is that with $q^{2}+1$ elements of $\mathbb{Z}[i]$, by Pigeonhole principle, two of them must satisfy $a \equiv c \bmod q$ and $b \equiv d \bmod q$, but then $a+b i \equiv c+d i \bmod q$. Therefore, there can't be more than q^{2} elements, so the field has precidely q^{2} elements.

