Homework 3 Solutions

Enrique Treviño

Most problems below are from Judson.

- 1. The Gaussian integers, $\mathbb{Z}[i]$, are a UFD. Factor each of the following elements in $\mathbb{Z}[i]$ into a product of irreducibles.
 - (a) 5
 - (b) 1 + 3i
 - (c) 6 + 8i
 - (d) 2

Solution 1.

- (a) 5 = (2+i)(2-i)
- (b) 1 + 3i = (1+i)(2+i)
- (c) $6+8i = 2(3+4i) = (1+i)(1-i)(3+4i) = (1+i)(1-i)(2+i)^2$.
- (d) 2 = (1+i)(1-i)
- 2. Let D be an integral domain.
 - (a) Prove that F_D is an abelian group under the operation of addition.
 - (b) Show that the operation of multiplication is well-defined in the field of fractions, F_D .
 - (c) Verify the associative and commutative properties for multiplication in F_D .

Solution 2. Recall that the operations are (a, b) + (c, d) = (ad + bc, bd), and $(a, b) \cdot (c, d) = (ac, bd)$.

(a) Commutativity is inherited from D, since ad = da, bc = cb, bd = db, ad + bc = bc + ad, so

$$(ad + bc, bd) = (cb + da, db) = (c, d) + (a, b).$$

Associativity is because the following two are equal:

$$((a, b) + (c, d)) + (e, f) = (ad + bc, bd) + (e, f) = (adf + bcf + bde, bdf),$$

$$(a,b) + ((c,d) + (e,f)) = (a,b) + (cf + de, df) = (adf + bcf + bde, bdf).$$

The identity is (0,1). Indeed $(a,b) + (0,1) = (a \cdot 1 + b \cdot 0, b \cdot 1) = (a,b)$. The inverse of (a,b) is (-a,b), indeed $(a,b) + (-a,b) = (ab + (-ab), b^2) = (0,b^2) = (0,1)$. The last equality is because (a,b) = (c,d) if ad = bc and we have $0 \cdot 1 = b^2 \cdot 0$. Therefore, it's an abelian group.

- (b) Suppose $(a, b) \sim (a', b'), (c, d) \sim (c', d')$, i.e. ab' = a'b, cd' = c'd. We want to show $(a, b) \cdot (c, d) \sim (a', b') \cdot (c', d')$. We want to show $(ac, bd) \sim (a'c', b'd')$, but for that we only need to verify acb'd' = a'c'bd and this is true because ab' = a'b and cd' = c'd.
- (c) We have

$$((a,b)\cdot(c,d))\cdot(e,f) = (ac,bd)\cdot(e,f) = (ace,bdf),$$

and

$$(a,b) \cdot ((c,d) \cdot (e,f)) = (a,b) \cdot (ce,df) = (ace,bdf)$$

Therefore, the operation is associative.

$$(a,b) \cdot (c,d) = (ac,bd) = (ca,db = (c,d) \cdot (a,b).$$

Therefore, it is commutative.

3. Prove or disprove: Any subring of a field F containing 1 is an integral domain.

Solution 3. Let D be a subring of F with identity. To be an integral domain we need to show D is commutative and that it has no zero divisors. Since F is a field, it is commutative, therefore D is commutative. Suppose ab = 0 with $a, b \in D$. Since $D \subseteq F$, then $a, b \in F$. Suppose $a \neq 0$. Then there is $a^{-1} \in F$. Therefore $a^{-1}(ab) = b$. But the product is also 0. Therefore b = 0.

Alternatively, one could see that if ab = 0 with $a, b \neq 0$, then there would be such a solution in F. But F is an integral domain. Contradiction!

4. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.

Solution 4. Suppose $p \in D$ is prime. Suppose p is not irreducible, so p = ab for some nonunits a, b. We know p|ab, so p|a or p|b. If p|a, then a = pk. Therefore p = ab = (pk)b = p(kb). Therefore kb = 1. Therefore b is a unit. Therefore p is irreducible.

5. Let p be prime and denote the field of fractions of $\mathbb{Z}_p[x]$ by $\mathbb{Z}_p(x)$. Prove that $\mathbb{Z}_p(x)$ is an infinite field of characteristic p.

Solution 5. Let $q(x) \in \mathbb{Z}_p[x]$. Then $q(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ for some $a_i \in \mathbb{Z}_p$. Then $p \cdot q(x) = (a_n p) x^n + (a_{n-1} p) x^{n-1} + \dots + (a_1 p) x + (a_0 p) \equiv 0$ since $a_i p \equiv 0 \mod p$. Therefore, $\mathbb{Z}_p[x]$ has characteristic p.

That $\mathbb{Z}_p[x]$ is infinite comes from the fact that it contains $1, 1 + x, 1 + x + x^2, \dots$, which are infinitely many elements.

- 6. Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$
 - (a) Prove that $\mathbb{Z}[\sqrt{2}]$ is an integral domain.
 - (b) Find all of the units in $\mathbb{Z}[\sqrt{2}]$.
 - (c) Determine the field of fractions of $\mathbb{Z}[\sqrt{2}]$.
 - (d) Prove that $\mathbb{Z}[\sqrt{2}i]$ is a Euclidean domain under the Euclidean valuation $\nu(a + b\sqrt{2}i) = a^2 + 2b^2$.

Solution 6.

- (a) Since $\mathbb{Q}(\sqrt{2})$ is a field, then $\mathbb{Z}[\sqrt{2}]$ is an integral domain. Indeed, if a + bi was a zero divisor in $\mathbb{Z}[\sqrt{2}]$, then it would also be a zero divisor in $\mathbb{Q}[\sqrt{2}]$.
- (b) Let $N(a + b\sqrt{2}) = |a^2 2b^2|$. Note

$$N((a+b\sqrt{2})(c+d\sqrt{2})) = N((ac+2bd) + (ad+bc)\sqrt{2})$$

= $|(ac+2bd)^2 - 2(ad+bc)^2| = |a^2c^2 + 4abcd + 4b^2d^2 - 2a^2d^2 - 4abcd - 2b^2c^2|$

and

$$N(a+b\sqrt{2})N(c+d\sqrt{2}) = |a^2 - 2b^2||c^2 - 2d^2| = |a^2c^2 + 4b^2d^2 - 2b^2c^2 - 2a^2d^2|$$

Therefore N((a+bi)(c+di)) = N(a+bi)N(c+di).

In particular, if u is a unit, we have N(a + bi) = N((a + bi)u) = N(a + bi)N(u). Therefore N(u) = 1 (unless N(a + bi) = 0, which means a = b = 0 because if at least one of a, b it not zero and $a^2 - 2b^2 = 0$, then $\sqrt{2} \in \mathbb{Q}$, which is impossible).

Therefore, we are looking for solutions to the equation $|a^2 - 2b^2| = 1$. The equation $a^2 - 2b^2 = 1$ is a Pell equation. One solution is a = 3, b = 2. From this, we can consider $(3 + 2\sqrt{2})^n$. Since $N(3 + 2\sqrt{2}) = 1$, then $N((3 + 2\sqrt{2})^n) = 1$. All of these are units (and one can show that they are the only units satisfying $a^2 - 2b^2 = 1$. To have $a^2 - 2b^2 = -1$, we can choose a = b = 1. Then $(1 + \sqrt{2})(3 + 2\sqrt{2})^n$ are all units. In fact $(3 + 2\sqrt{2}) = (1 + \sqrt{2})^2$. Therefore, the units are all the powers of $(1 + \sqrt{2})$. But we must also consider their conjugates, their negatives and the negatives of their conjugates. For example, $3 + 2\sqrt{2}, 3 - 2\sqrt{2}, -3 + 2\sqrt{2}, -3 - 2\sqrt{2}$. These are all the units. (c) The elements have the form $\frac{a+b\sqrt{2}}{c+d\sqrt{2}}$, i.e.

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{(a+b\sqrt{2})(c-d\sqrt{2})}{c^2-2d^2} = \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2} \in \mathbb{Q}[\sqrt{2}].$$

Let $p/q + (r/s)i \in \mathbb{Q}[\sqrt{2}]$, i.e., $a, b, c, d \in \mathbb{Z}$ with $c, d \neq 0$. We want to find a, b, c, d such that

$$\frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2} = \frac{p}{q} + \frac{r}{s}\sqrt{2} = \frac{ps+qr\sqrt{2}}{qs} = \frac{pqs^2+q^2rs\sqrt{2}}{q^2s^2}$$

Let d = 0. Let c = qs. We want $ac = pqs^2$ and $bc = q^2rs$, so a = ps and b = qr. Grabbing a = ps, b = qr, c = qs, d = 0 we have

$$\frac{a+bi}{c+di} = \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2} = \frac{ac}{c^2} + \frac{bc}{c^2}\sqrt{2} = \frac{a}{c} + \frac{b}{c}\sqrt{2} = \frac{p}{q} + \frac{r}{s}\sqrt{2}.$$

Therefore $\mathbb{Q}[\sqrt{2}] = \mathbb{F}_{\mathbb{Z}[\sqrt{2}]}.$

(d) Let $a + b\sqrt{2}i, c + d\sqrt{2}i \in \mathbb{Z}[\sqrt{2}i]$, with c, d not both zero.

$$\frac{a+b\sqrt{2}i}{c+d\sqrt{2}i} = \frac{(a+b\sqrt{2}i)(c-d\sqrt{2}i)}{c^2+2d^2} = \frac{ac+2bd}{c^2+2d^2} + \frac{bc-ad}{c^2+2d^2}\sqrt{2}i.$$

Let m, n be the closest integers to $\frac{ac+2bd}{c^2+2d^2}$, and $\frac{bc-ad}{c^2+2d^2}$, respectively. Then there exist rationals $r, s \leq 1/2$ such that

$$\frac{a+b\sqrt{2}i}{c+d\sqrt{2}i} = (m+n\sqrt{2}i) + (r+s\sqrt{2}i).$$

Then

$$\begin{aligned} a + b\sqrt{2}i &= (m + n\sqrt{2}i)(c + d\sqrt{2}i) + (r + s\sqrt{2}i)(c + d\sqrt{2}i) \\ &= (m + n\sqrt{2}i)(c + d\sqrt{2}i) + ((rc + 2ds) + (sc + rd)\sqrt{2}i). \end{aligned}$$

Since $a + b\sqrt{2}i \in \mathbb{Z}[\sqrt{2}i]$ and $(m + n\sqrt{2}i)(c + d\sqrt{2}i) \in \mathbb{Z}[\sqrt{2}i]$, then $(r + s\sqrt{2}i)(c + d\sqrt{2}i) \in \mathbb{Z}[\sqrt{2}i]$. But then we have our division algorithm. Note that

$$\begin{split} \nu((r+s\sqrt{2}i)(c+d\sqrt{2}i)) &= (r^2+2s^2)(c^2+2d^2) \le \left(\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)^2\right)\nu(c+d\sqrt{2}i) \\ &= \frac{3}{4}\nu(c+d\sqrt{2}i) < \nu(c+d\sqrt{2}i). \end{split}$$

7. Let D be a Euclidean domain with Euclidean valuation ν . If u is a unit in D, show that $\nu(u) = \nu(1)$.

Solution 7. The rules are that $\nu(a) \leq \nu(ab)$ for any nonzero *b* and that for any $a, b \neq 0$, there exist q, r such that a = bq + r with r = 0 or $\nu(r) < \nu(b)$. Let *u* be a unit. Then $u \neq 0$. Then $1 = uu^{-1}$. But $\nu(u) \leq \nu(uu^{-1})$, so $\nu(u) \leq \nu(1)$. Similarly $\nu(1) \leq \nu(1 \cdot u) = \nu(u)$. Therefore $\nu(1) \leq \nu(u)$. Therefore $\nu(1) = \nu(u)$.

8. An ideal of a commutative ring R is said to be **finitely generated** if there exist elements a_1, \ldots, a_n in R such that every element $r \in R$ can be written as $a_1r_1 + \cdots + a_nr_n$ for some r_1, \ldots, r_n in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

Solution 8. Let's first prove that if R satisfies the ascending chain condition, then every ideal of R is finitely generated. Let I be a nonzero ideal (the zero ideal is finitely generated since it's $\{0\} = \langle 0 \rangle$). Let a_1 be a nonzero element of I. If $I = \langle a_1 \rangle$, then I is finitely generated. If not, then $I_1 = \langle a_1 \rangle$ is a subset of I. Now consider $a_2 \in I \setminus I_1$ (an element of I that is not in I_1). Let $I_2 = \langle a_1, a_2 \rangle$. If $I = I_2$,

then I is finitely generated. Otherwise, there exists $a_3 \in I \setminus I_2$. Let $I_3 = \langle a_1, a_2, a_3 \rangle$. We can continue this process. So we have

$$I_1 \subseteq I_2 \subseteq I_3 \cdots$$
.

By the ascending chain condition, there is an N such that for all $n \ge N$, $I_n = I_N$. But if $I_{N+1} = I_N$ that means that there are no elements of I not in I_N , therefore $I = \langle a_1, a_2, \ldots, a_N \rangle$, so I is finitely generated.

For the converse, suppose every ideal of R is finitely generated. Now consider an ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

As proved in class $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal. But since every ideal is finitely generated, then I =

 $\langle a_1, a_2, \ldots, a_k \rangle$. But then, for $i = 1, 2, 3, \ldots, k$, $a_i \in I_{j_i}$ for some positive integer j_i . Let $N = \max\{j_1, j_2, \ldots, j_k\}$. Then $a_i \in I_{j_i} \subseteq I_N$ because $j_i \leq N$. Therefore

$$I = \langle a_1, a_2, \dots, a_k \rangle \subseteq I_N.$$

Therefore $I_n = I_N$ for all $n \ge N$.

9. Let R be a PID. Let P be a prime ideal of R. Prove that R/P is a PID.

Solution 9. Let *I* be a nonzero ideal of R/P (the zero ideal is principal). The elements of *I* are of the form r + P for some $r \in P$. Let $J = \{r \mid r + P \in I\}$. Let's show *J* is an ideal of *R*. Let $j \in J$ and $s \in J$, then $j + P \in I$ and $s + P \in I$, so $(j + P) - (s + P) \in I$. But (j + P) - (s + P) = (j - s) + P. Therefore $j - s \in J$. If $r \in R$, then $rj + P = (r + P)(j + P) \in I$. Therefore $rj \in J$. Therefore *J* is an ideal of *R*. Since *R* is a PID, then $J = \langle j \rangle$ for some $j \in J$. But then for any $i + P \in I$, $i \in \langle j \rangle$, so i = jk for $k \in R$, so (i + P) = (k + P)(j + P), so $(i + P) \in \langle j + P \rangle$. Therefore $I = \langle < j + P \rangle$.

The only thing left to do to prove that R/P is a PID is to confirm that it is an integral domain. Suppose that (i + P)(j + P) = 0. Then ij + P = 0, so $ij \in P$. Since P is a prime ideal, then $i \in P$ or $j \in P$. In the first case i + P = 0, in the second j + P = 0. Therefore R/P is an integral domain.

10. (a) Prove that $\mathbb{Z}[i]/\langle 1+i \rangle$ is a field of order 2.

(b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. Prove that $\mathbb{Z}[i]/\langle q \rangle$ is a field with q^2 elements.

Solution 10.

(a) Let's illustrate by doing the division algorithm on 7 + 12i with 1 + i.

$$\frac{7+12i}{1+i} = \frac{(7+12i)(1-i)}{2} = \frac{19+5i}{2} = \frac{19}{2} + \frac{5}{2}i = (9+2i) + \left(\frac{1}{2} + \frac{1}{2}i\right).$$

Therefore

$$7 + 12i = (1+i)(9+2i) + (1+i)\left(\frac{1}{2} + \frac{1}{2}i\right) = (1+i)(9+2i) + i.$$

Therefore $7 + 12i \equiv i \mod \langle 1 + i \rangle$. In general,

$$\frac{a+bi}{1+i} = \frac{(a+bi)(1-i)}{2} = \frac{a+b}{2} + \frac{b-a}{2}i.$$

If a, b are both of the same parity, then $\frac{a+b}{2}$ and $\frac{b-a}{2}$ are integers, so $a + bi \in \langle 1 + i \rangle$. If a and b have different parity, then

$$a + bi = \left(\frac{a+b-1}{2} + \frac{b-a-1}{2}\right)(1+i) + (1+i)\left(\frac{1}{2} + \frac{1}{2}i\right) = (c+di)(1+i) + i,$$

for $c, d \in \mathbb{Z}$. Therefore $a + bi \equiv i \mod \langle 1 + i \rangle$. This means that $\mathbb{Z}[i]/\langle 1 + i \rangle$ has two elements $\{0, i\}$. A ring with two elements is a field of order 2.

(b) Since $q \equiv 3 \mod 4$ and q is prime, then q is irreducible in $\mathbb{Z}[i]$, so $\langle q \rangle$ is a maximal ideal (indeed, if $\langle q \rangle \subseteq I \subseteq \mathbb{Z}[i]$, then because $\mathbb{Z}[i]$ is a PID, $I = \langle i \rangle$, but then i | q, so i is a unit or i is associate to q, i.e. $I = \mathbb{Z}[i]$ or $I = \langle q \rangle$). Therefore $\mathbb{Z}[i]/\langle q \rangle$ is a field. Now, the reasons it has q^2 elements is that for any $a, b \in \mathbb{Z}_q$, a + bi is different modulo $\langle q \rangle$ because if $a \neq c \mod q$ and $b \neq d \mod q$, then $(a - c) + (b - d)i \neq 0 \mod q$. Therefore, we have at least q^2 distinct elements in $\mathbb{Z}[i]/\langle q \rangle$. The reasons we don't have more is that with $q^2 + 1$ elements of $\mathbb{Z}[i]$, by Pigeonhole principle, two of them must satisfy $a \equiv c \mod q$ and $b \equiv d \mod q$, but then $a + bi \equiv c + di \mod q$. Therefore, there can't be more than q^2 elements, so the field has precidely q^2 elements.