Homework 4

Most problems below are from Judson.

- 1. If F is a field, show that F[x] is a vector space over F, where the vectors in F[x] are polynomials. Vector addition is polynomial addition, and scalar multiplication is defined by $\alpha p(x)$ for $\alpha \in F$.
- 2. Let $\mathbb{Q}(\sqrt{2},\sqrt{3})$ be the field generated by elements of the form $a + b\sqrt{2} + c\sqrt{3}$, where a, b, c are in \mathbb{Q} . Prove that $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is a vector space of dimension 4 over \mathbb{Q} . Find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
- 3. Let F be a field and denote the set of n-tuples of F by F^n . Given vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ in F^n and α in F, define vector addition by

 $u + v = (u_1, \dots, u_n) + (v_1, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n)$

and scalar multiplication by

$$\alpha u = \alpha(u_1, \dots, u_n) = (\alpha u_1, \dots, \alpha u_n).$$

Prove that F^n is a vector space of dimension n under these operations.

- 4. Which of the following sets are subspaces of \mathbb{R}^3 ? If the set is indeed a subspace, find a basis for the subspace and compute its dimension.
 - (a) { $(x_1, x_2, x_3) : 3x_1 2x_2 + x_3 = 0$ }
 - (b) $\{(x_1, x_2, x_3) : 3x_1 + 4x_3 = 0, 2x_1 x_2 + x_3 = 0\}$
 - (c) { $(x_1, x_2, x_3) : x_1 2x_2 + 2x_3 = 2$ }
 - (d) $\{(x_1, x_2, x_3) : 3x_1 2x_2^2 = 0\}$
- 5. Let V be a vector space of dimension n. Prove each of the following statements.
 - (a) If $S = \{v_1, \ldots, v_n\}$ is a set of linearly independent vectors for V, then S is a basis for V.
 - (b) If $S = \{v_1, \ldots, v_n\}$ spans V, then S is a basis for V.
 - (c) If $S = \{v_1, \ldots, v_k\}$ is a set of linearly independent vectors for V with k < n, then there exist vectors v_{k+1}, \ldots, v_n such that

$$\{v_1,\ldots,v_k,v_{k+1},\ldots,v_n\}$$

is a basis for V.

- 6. Prove that any set of vectors containing **0** is linearly dependent.
- 7. If a vector space V is spanned by n vectors, show that any set of m vectors in V must be linearly dependent for m > n.
- 8. Linear Transformations. Let V and W be vector spaces over a field F, of dimensions m and n, respectively. If $T: V \to W$ is a map satisfying

$$T(u+v) = T(u) + T(v)$$
$$T(\alpha v) = \alpha T(v)$$

for all $\alpha \in F$ and all $u, v \in V$, then T is called a **linear transformation** from V into W.

- (a) Prove that the **kernel** of T, $ker(T) = \{v \in V : T(v) = 0\}$, is a subspace of V. The kernel of T is sometimes called the **null space** of T.
- (b) Prove that the **range** or **range space** of T, $R(V) = \{w \in W : T(v) = w \text{ for some } v \in V\}$, is a subspace of W.
- (c) Show that $T: V \to W$ is injective if and only if $\ker(T) = \{\mathbf{0}\}$.
- (d) Let $\{v_1, \ldots, v_k\}$ be a basis for the null space of T. We can extend this basis to be a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_m\}$ of V. Why? Prove that $\{T(v_{k+1}), \ldots, T(v_m)\}$ is a basis for the range of T. Conclude that the range of T has dimension m k.
- (e) Let dim $V = \dim W$. Show that a linear transformation $T: V \to W$ is injective if and only if it is surjective.
- 9. Let V and W be finite dimensional vector spaces of dimension n over a field F. Suppose that $T: V \to W$ is a vector space isomorphism. If $\{v_1, \ldots, v_n\}$ is a basis of V, show that $\{T(v_1), \ldots, T(v_n)\}$ is a basis of W. Conclude that any vector space over a field F of dimension n is isomorphic to F^n .