Homework 4

Most problems below are from Judson.

1. If F is a field, show that $F[x]$ is a vector space over F, where the vectors in $F[x]$ are polynomials. Vector addition is polynomial addition, and scalar multiplication is defined by $\alpha p(x)$ for $\alpha \in F$.
2. Let $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ be the field generated by elements of the form $a+b \sqrt{2}+c \sqrt{3}$, where a, b, c are in \mathbb{Q}. Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a vector space of dimension 4 over \mathbb{Q}. Find a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
3. Let F be a field and denote the set of n-tuples of F by F^{n}. Given vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ in F^{n} and α in F, define vector addition by

$$
u+v=\left(u_{1}, \ldots, u_{n}\right)+\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)
$$

and scalar multiplication by

$$
\alpha u=\alpha\left(u_{1}, \ldots, u_{n}\right)=\left(\alpha u_{1}, \ldots, \alpha u_{n}\right) .
$$

Prove that F^{n} is a vector space of dimension n under these operations.
4. Which of the following sets are subspaces of \mathbb{R}^{3} ? If the set is indeed a subspace, find a basis for the subspace and compute its dimension.
(a) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}-2 x_{2}+x_{3}=0\right\}$
(b) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}+4 x_{3}=0,2 x_{1}-x_{2}+x_{3}=0\right\}$
(c) $\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}-2 x_{2}+2 x_{3}=2\right\}$
(d) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}-2 x_{2}^{2}=0\right\}$

5 . Let V be a vector space of dimension n. Prove each of the following statements.
(a) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of linearly independent vectors for V, then S is a basis for V.
(b) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ spans V, then S is a basis for V.
(c) If $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is a set of linearly independent vectors for V with $k<n$, then there exist vectors v_{k+1}, \ldots, v_{n} such that

$$
\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}
$$

is a basis for V.
6. Prove that any set of vectors containing $\mathbf{0}$ is linearly dependent.
7. If a vector space V is spanned by n vectors, show that any set of m vectors in V must be linearly dependent for $m>n$.
8. Linear Transformations. Let V and W be vector spaces over a field F, of dimensions m and n, respectively. If $T: V \rightarrow W$ is a map satisfying

$$
\begin{aligned}
T(u+v) & =T(u)+T(v) \\
T(\alpha v) & =\alpha T(v)
\end{aligned}
$$

for all $\alpha \in F$ and all $u, v \in V$, then T is called a linear transformation from V into W.
(a) Prove that the kernel of T, $\operatorname{ker}(T)=\{v \in V: T(v)=\mathbf{0}\}$, is a subspace of V. The kernel of T is sometimes called the null space of T.
(b) Prove that the range or range space of $T, R(V)=\{w \in W: T(v)=w$ for some $v \in V\}$, is a subspace of W.
(c) Show that $T: V \rightarrow W$ is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$.
(d) Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for the null space of T. We can extend this basis to be a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{m}\right\}$ of V. Why? Prove that $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{m}\right)\right\}$ is a basis for the range of T. Conclude that the range of T has dimension $m-k$.
(e) Let $\operatorname{dim} V=\operatorname{dim} W$. Show that a linear transformation $T: V \rightarrow W$ is injective if and only if it is surjective.
9. Let V and W be finite dimensional vector spaces of dimension n over a field F. Suppose that $T: V \rightarrow W$ is a vector space isomorphism. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W. Conclude that any vector space over a field F of dimension n is isomorphic to F^{n}.

