Homework 4 Solutions

Enrique Treviño

Most problems below are from Judson.

1. If F is a field, show that $F[x]$ is a vector space over F, where the vectors in $F[x]$ are polynomials. Vector addition is polynomial addition, and scalar multiplication is defined by $\alpha p(x)$ for $\alpha \in F$.

Solution 1. Let $p(x), q(x) \in F[x]$. Then $p(x)+q(x)$ is also a polynomial, so it's also in $F[x]$. The scalar multiple of $\alpha p(x)$ is also a polynomial with coefficients in F. Therefore $F[x]$ is a vector space over F.
2. Let $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ be the field generated by elements of the form $a+b \sqrt{2}+c \sqrt{3}$, where a, b, c are in \mathbb{Q}. Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a vector space of dimension 4 over \mathbb{Q}. Find a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Solution 2. A basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is $\mathfrak{B}=\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
We'll prove that the span of \mathfrak{B} is indeed $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ to show that it is a vector space. We'll first prove that \mathfrak{B} is linearly independent.
Suppose there are $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{Q}$ not all zero such that

$$
c_{1}+c_{2} \sqrt{2}+c_{3} \sqrt{3}+c_{4} \sqrt{6}=0
$$

Then (after rearranging and squaring)

$$
\begin{aligned}
c_{2} \sqrt{2}+c_{3} \sqrt{3} & =-c_{1}-c_{4} \sqrt{6} \\
2 c^{2}+3 c_{3}^{2}+2 c_{2} c_{3} \sqrt{6} & =c_{1}^{2}+6 c_{4}^{2}+2 c_{1} c_{4} \sqrt{6} \\
2 c_{2}^{2}+3 c_{3}^{2}-c_{1}^{2}-6 c_{4}^{2} & =\left(2 c_{1} c_{4}-2 c_{2} c_{3}\right) \sqrt{6}
\end{aligned}
$$

Note that the left side is rational and that $2 c_{1} c_{4}-2 c_{2} c_{3}$ is rational. If $2 c_{1} c_{4}-2 c_{2} c_{3} \neq 0$, then $\sqrt{6} \in \mathbb{Q}$, which is a contradiction.
Therefore $2 c_{1} c_{4}-2 c_{2} c_{3}=0$, so $2 c_{2}^{2}+3 c_{3}^{2}-c_{1}^{2}-6 c_{4}^{2}=0$ as well. Since we can scale by any positive integer, we may assume $c_{1}, c_{2}, c_{3}, c_{4}$ are integers with $\operatorname{gcd}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=1$. If $c_{4}=0$, then $c_{2} c_{3}=0$ so $c_{2}=0$ or $c_{3}=0$. When $c_{2}=0$ we have $c_{3} \sqrt{3}=-c_{1}$ which implies that $c_{1}=c_{3}=0$ or that $\sqrt{3} \in \mathbb{Q}$. Both are not possible. In the case $c_{3}=0$ we have $\sqrt{2} \in \mathbb{Q}$ or $c_{1}=c_{2}=c_{3}=c_{4}=0$. Therefore we may assume $c_{4} \neq 0$.
We have $2 c_{2}^{2}+3 c_{3}^{2}=c_{1}^{2}+6 c_{4}^{2}$ with all integers and $\operatorname{gcd}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=1$. Then modulo 3 we have $2 c_{2}^{2} \equiv$ $c_{1}^{2} \bmod 3$. But $x^{2} \equiv 0,1, \bmod 3$, therefore $2 c_{2}^{2} \equiv 0,2 \bmod 3$ and $c_{1}^{2} \equiv 0,1 \bmod 3$, so $c_{2} \equiv c_{1} \equiv 0 \bmod 3$. Therefore $c_{2}=3 c_{2}^{\prime}, c_{1}=3 c_{1}^{\prime}$. But then

$$
\begin{aligned}
18 c_{2}^{\prime 2}+3 c_{3}^{2} & =9 c_{1}^{\prime 2}+6 c_{4}^{2} \\
6 c_{2}^{\prime 2}+c_{3}^{2} & =3 c_{1}^{\prime 2}+2 c_{4}^{2} .
\end{aligned}
$$

But then $c_{3}^{2} \equiv 2 c_{4}^{2} \bmod 3$. Therefore, $c_{3} \equiv c_{4} \bmod 3$. But then $c_{1}, c_{2}, c_{3}, c_{4}$ are all multiples of 3 , contradicting that $\operatorname{gcd}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=1$. Therefore, $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent.
Therefore $\operatorname{Span}\{1, \sqrt{2}, \sqrt{3}\} \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subset \operatorname{Span}\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.
3. Let F be a field and denote the set of n-tuples of F by F^{n}. Given vectors $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ in F^{n} and α in F, define vector addition by

$$
u+v=\left(u_{1}, \ldots, u_{n}\right)+\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)
$$

and scalar multiplication by

$$
\alpha u=\alpha\left(u_{1}, \ldots, u_{n}\right)=\left(\alpha u_{1}, \ldots, \alpha u_{n}\right) .
$$

Prove that F^{n} is a vector space of dimension n under these operations.
Solution 3. To check closed under addition: Since $u_{i}+v_{i} \in F$, for all $i=1,2, \ldots, n$, then $u+v$ is in F^{n}.
Since $\alpha u_{i} \in F$ (because $\alpha \in F$), then $\alpha u \in F^{n}$. Therefore F^{n} is a vector space over F.
Now we need to verify the dimension. We need to show $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$ with the 1 being in the i-th position form a basis for F^{n}. Suppose

$$
\sum_{i=1}^{n} c_{i} e_{i}=0
$$

Then the vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is zero. But that means $c_{1}, c_{2}, \ldots, c_{n}$ are all zero. Therefore the e_{i} 's are linearly independent. Now for any vector u we have

$$
u=\sum_{i=1}^{n} u_{i} e_{i}
$$

Therefore u is in the span of the e_{i} 's. Therefore we have a basis of n elements.
4. Which of the following sets are subspaces of \mathbb{R}^{3} ? If the set is indeed a subspace, find a basis for the subspace and compute its dimension.
(a) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}-2 x_{2}+x_{3}=0\right\}$
(b) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}+4 x_{3}=0,2 x_{1}-x_{2}+x_{3}=0\right\}$
(c) $\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}-2 x_{2}+2 x_{3}=2\right\}$
(d) $\left\{\left(x_{1}, x_{2}, x_{3}\right): 3 x_{1}-2 x_{2}^{2}=0\right\}$

Solution 4.

(a) It is a subspace. Suppose $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)$ are in the set. Then $3 x_{1}-2 x_{2}+x_{3}=0$ and $3 y_{1}-2 y_{2}+y_{3}=0$, so $\left(3\left(x_{1}+y_{1}\right)-2\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)=0\right.$, so $\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right.$ is in the set. With respect to scalar multiple, $3\left(\alpha x_{1}\right)-2\left(\alpha x_{2}\right)+\alpha x_{3}=\alpha\left(3 x_{1}-2 x_{2}+x_{3}\right)=0$.
To find the dimension. Note that $x_{3}=-3 x_{1}+2 x_{2}$. Once x_{1}, x_{2} are selected, x_{3} is fixed. The dimension is ≤ 2. It cannot be one, since not all terms are multiples of one of them. Therefore, the dimension is 2 .
Another way to solve this is to see that $T\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=3 x_{1}-2 x_{2}+x_{3}$ is a linear transformation. This set is the kernel, so it is a subspace. The dimension of the kernel is 3 minus the dimension of the range. But the range is \mathbb{R}, so it has dimension 1 . Therefore, the kernel has dimension 2.
(b) It is a subspace. Indeed, suppose $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)$ are in the set and α is a scalar. We know $3 x_{1}+4 x_{3}=0$ and $2 x_{1}-x_{2}+x_{3}=0$, so $3\left(\alpha x_{1}\right)+4\left(\alpha x_{3}\right)=0$ and $2\left(\alpha x_{1}\right)-\left(\alpha x_{2}\right)+\left(\alpha x_{3}\right)=0$. Also

$$
3\left(x_{1}+y_{1}\right)+4\left(x_{3}+y_{3}\right)=\left(3 x_{1}+4 x_{3}\right)+\left(3 y_{1}+4 y_{3}\right)=0
$$

and

$$
2\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)=\left(2 x_{1}-x_{2}+x_{3}\right)+\left(2 y_{1}-y_{2}+y_{3}\right)=0 .
$$

For the dimension, note that $x_{1}=-\frac{4}{3} x_{3}$ and that

$$
x_{2}=2 x_{1}+x_{3}=-\frac{8}{3} x_{3}+x_{3}=-\frac{5}{3} x_{3}
$$

Therefore, once x_{3} is chosen, then x_{1}, x_{2} are fixed. The dimension is therefore 1 .
(c) It is not a subspace. Note $(0,0,2)$ and $(0,-1,0)$ are in the set but $(0,-1,2)$ is not.
(d) Note $(2 / 3,1,0)$ and $(2 / 3,-1,0)$ are in the set. Yet their sum is $(4 / 3,0,0)$ is not in the set since $3(4 / 3)-2(0)^{2}=4 \neq 0$.
5. Let V be a vector space of dimension n. Prove each of the following statements.
(a) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of linearly independent vectors for V, then S is a basis for V.
(b) If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ spans V, then S is a basis for V.
(c) If $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is a set of linearly independent vectors for V with $k<n$, then there exist vectors v_{k+1}, \ldots, v_{n} such that

$$
\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}
$$

is a basis for V.

Solution 5.

(a) Suppose it was not a basis. Then there exists $v \in V$ such that v is not in the span of $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Therefore $\left\{v_{1}, \cdots, v_{n}, v\right\}$ is a linearly independent set. But this is impossible (as proved in problem 7).
(b) Suppose it's not linearly independent. Then

$$
v_{n}=\sum_{i=1}^{n-1} c_{i} v_{i},
$$

for some $c_{i} \in \mathbb{F}$. But then $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a span of V. Now consider the basis of V with n vectors. As proved in problem 7, this basis would be linearly dependent. That's a contradiction. Therefore $\left\{v_{1}, \cdots, v_{n}\right\}$ is linearly independent.
(c) The proof of this is the construction described in the solution of problem 7 .
6. Prove that any set of vectors containing $\mathbf{0}$ is linearly dependent.

Solution 6. Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be a set of vector containing 0 . Without loss of generality, let $v_{1}=0$. Then

$$
v_{1}+0 v_{2}+\cdots+0 v_{r}=0 .
$$

But the coefficient of $v_{1} \neq 0$, therefore the set is linearly dependent.
7. If a vector space V is spanned by n vectors, show that any set of m vectors in V must be linearly dependent for $m>n$.

Solution 7. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ span V and let $\left\{u_{1}, \ldots, u_{m}\right\}$ be m vectors in V. Suppose for the sake of contradiction that $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is linearly independent. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ spans V, then

$$
u_{1}=\sum_{i=1}^{n} c_{i} v_{i} .
$$

If $u_{1}=0$, then $\left\{u_{1}, \ldots, u_{m}\right\}$ is not linearly independent, so at least one of the c_{i} 's is nonzero. Reorder the vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ to force $c_{1} \neq 0$. Therefore

$$
v_{1}=\frac{1}{c_{1}}\left(u_{1}-c_{2} v_{2}-c_{3} v_{3}-\cdots-c_{n} v_{n}\right) .
$$

Therefore v_{1} is in the span of $\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. But since $v_{2}, v_{3}, \ldots, v_{n}$ are also in that span, then $\left\{u_{1}, v_{2}, \ldots, v_{n}\right\}$ spans all of V. Therefore, there exist integers $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
u_{2}=c_{1} u_{1}+c_{2} v_{2}+c_{3} v_{3}+\cdots+c_{n} v_{n} .
$$

Note that since $\left\{u_{1}, u_{2}\right\}$ are independent, then $c_{2} v_{2}+\cdots+c_{n} v_{n} \neq 0$. Therefore, there's at least one nonzero coefficient. Reordering, we can force that coefficient to be $c_{2} \neq 0$. But then

$$
v_{2}=\frac{1}{c_{2}}\left(u_{2}-c_{1} u_{1}-c_{3} v_{3}-\cdots-c_{n} v_{n}\right) .
$$

Therefore v_{2} is in the span of $\left\{u_{1}, u_{2}, v_{3}, \cdots, v_{n}\right\}$. As before, this implies $\left\{u_{1}, u_{2}, v_{3}, v_{4}, \cdots, v_{n}\right\}$ spans V. Therefore we can write u_{3} in terms of these vectors and by similar reasoning conclude that $\left\{u_{1}, u_{2}, u_{3}, v_{4}, v_{5}, \cdots, v_{n}\right\}$ spans V. We can continue inductively to eventually show $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ spans V. We have $m>n$, so $m \geq n+1$. Consider u_{n+1}. Since $\left\{u_{1}, \ldots, u_{n}\right\}$ spans V, then

$$
u_{n+1}=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}
$$

Therefore $\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{n+1}\right\}$ is linearly dependent. Contradiction!
Therefore $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ is linearly dependent.
8. Linear Transformations. Let V and W be vector spaces over a field F, of dimensions m and n, respectively. If $T: V \rightarrow W$ is a map satisfying

$$
\begin{aligned}
T(u+v) & =T(u)+T(v) \\
T(\alpha v) & =\alpha T(v)
\end{aligned}
$$

for all $\alpha \in F$ and all $u, v \in V$, then T is called a linear transformation from V into W.
(a) Prove that the kernel of T, $\operatorname{ker}(T)=\{v \in V: T(v)=\mathbf{0}\}$, is a subspace of V. The kernel of T is sometimes called the null space of T.
(b) Prove that the range or range space of $T, R(V)=\{w \in W: T(v)=w$ for some $v \in V\}$, is a subspace of W.
(c) Show that $T: V \rightarrow W$ is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$.
(d) Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for the null space of T. We can extend this basis to be a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{m}\right\}$ of V. Why? Prove that $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{m}\right)\right\}$ is a basis for the range of T. Conclude that the range of T has dimension $m-k$.
(e) Let $\operatorname{dim} V=\operatorname{dim} W$. Show that a linear transformation $T: V \rightarrow W$ is injective if and only if it is surjective.

Solution 8.

(a) Let $u, w \in \operatorname{ker}(T)$ and α is a scalar. Since $u, w \in T$, then $T(u)=T(w)=0$. Since T is a linear transformation, then

$$
\begin{aligned}
T(u+w) & =T(u)+T(w)=0+0=0 \\
T(\alpha u) & =\alpha T(u)=0
\end{aligned}
$$

Therefore $\operatorname{ker}(T)$ is a subspace of V.
(b) Let $u, w \in R(V)$. Therefore, there exist $r, s \in V$ such that $T(r)=u, T(s)=w$. But then

$$
T(r)+T(s)=T(r+s)=u+w
$$

which implies that $u+w \in R(V)$. Also $T(\alpha r)=\alpha T(r)=\alpha u$. Therefore $\alpha u \in R(V)$. Therefore $R(V)$ is a subspace.
(c) Suppose T is one-to-one. Then $T(u)=T(v)$ implies $u=v$. Suppose $k \in \operatorname{ker} T$. Then $T(k)=0=$ $T(0)$. But T is one-to-one, so $k=0$. Therefore $\operatorname{ker}(T)=\{0\}$.
Now suppose that $\operatorname{ker}(T)=\{0\}$. Let u, v be such that $T(u)=T(v)$. Then $T(u)-T(v)=0$, so $T(u-v)=0$. Therefore $u-v \in \operatorname{ker} T$. Therefore $u-v=0$, so $u=v$.
(d) Suppose $\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ is a basis of V. By the same strategy as shown in the proof of the previous exercise, we can show that $\left\{v_{1}, v_{2}, \cdots, v_{k}, u_{k+1}, u_{k+2}, \cdots, u_{m}\right\}$ spans V and is linearly independent, so it's a basis. We can now let $v_{j}=u_{j}$ for $j=k+1, k+2, \cdots, m$ and conclude that there is a basis of V of the form $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$.
Let $x \in R(V)$. Then $T(v)=x$ for some $v \in V$. Therefore

$$
v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} .
$$

But then

$$
\begin{aligned}
T(v) & =T\left(\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}\right)+\left(c_{k+1} v_{k+1}+\cdots+c_{m} v_{m}\right)\right) \\
& =T\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)+T\left(c_{k+1} v_{k+1}+\cdots+c_{m} v_{m}\right) \\
& =c_{1} T\left(v_{1}\right)+\cdots+c_{k} T\left(v_{k}\right)+c_{k+1} T\left(v_{k+1}\right)+\cdots+c_{m} T\left(v_{m}\right) \\
& =c_{k+1} T\left(v_{k+1}\right)+\cdots c_{m} T\left(v_{m}\right) .
\end{aligned}
$$

At the end we used that $T\left(v_{1}\right)=T\left(v_{2}\right)=\cdots T\left(v_{k}\right)=0$ since $v_{1}, v_{2}, \ldots, v_{k} \in \operatorname{ker}(T)$. But all of this implies that x is in the span of $\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots, T\left(v_{m}\right)\right\}$. To conclude we need to show that $\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots, T\left(v_{m}\right)\right\}$ is linearly independent.
Suppose

$$
c_{k+1} T\left(v_{k+1}\right)+c_{k+2} T\left(v_{k+2}\right)+\cdots+c_{m} T\left(v_{m}\right)=0 .
$$

But since T is a linear transformation, we have

$$
T\left(c_{k+1} v_{k+1}+c_{k+2} v_{k+2}+\cdots+c_{m} T\left(v_{m}\right)\right)=0 .
$$

Therefore

$$
\sum_{i=k+1}^{m} c_{i} v_{i} \in \operatorname{ker}(T)
$$

But that means there exist $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
\sum_{i=k+1}^{m} c_{i} v_{i}=\sum_{i=1}^{k} c_{i} v_{i}
$$

Therefore

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{k} v_{k}+\left(-c_{k+1}\right) v_{k+1}+\left(-c_{k+2}\right) v_{k+2}+\cdots+\left(-c_{m}\right) v_{m}=0
$$

Since $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ are linearly independent, then

$$
c_{1}=c_{2}=\cdots=c_{m}=0
$$

Therefore $\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \cdots, T\left(v_{m}\right)\right\}$ is linearly independent. Therefore it is a basis for $R(V)$ and the dimension of $R(V)$ is $m-k$.
(e) We know $m=n$. Suppose T is one-to-one, then $\operatorname{ker}(T)=\{0\}$. That means the dimension of $R(V)$ is $m-0=m=n$. Therefore $R(V)$ has the same dimension as W, therefore $R(V)=W$.
If T is onto, then $R(V)=W$. But that means the dimension of the range is $n=m$. Therefore the dimension of the null space is $m-m=0$. That means $\operatorname{ker}(T)=\{0\}$, so T is one-to-one.
9. Let V and W be finite dimensional vector spaces of dimension n over a field F. Suppose that $T: V \rightarrow W$ is a vector space isomorphism. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W. Conclude that any vector space over a field F of dimension n is isomorphic to F^{n}.

Solution 9. Since T is a linear transformation and it's isomorphic, so it's one-to-one, then the null space is $\{0\}$. Therefore (as in 8 d), the basis for $R(V)$ is $\left\{T\left(v_{1}\right), \cdots, T\left(v_{n}\right)\right\}$. But $R(V)=W$ since T is onto.

