
Homework 4 Solutions

Enrique Treviño

Most problems below are from Judson.

1. If F is a field, show that F [x] is a vector space over F , where the vectors in F [x] are polynomials.
Vector addition is polynomial addition, and scalar multiplication is defined by αp(x) for α ∈ F .

Solution 1. Let p(x), q(x) ∈ F [x]. Then p(x) + q(x) is also a polynomial, so it’s also in F [x]. The
scalar multiple of αp(x) is also a polynomial with coefficients in F . Therefore F [x] is a vector space
over F .

2. Let Q(
√

2,
√

3 ) be the field generated by elements of the form a + b
√

2 + c
√

3, where a, b, c are in Q.
Prove that Q(

√
2,
√

3 ) is a vector space of dimension 4 over Q. Find a basis for Q(
√

2,
√

3 ).

Solution 2. A basis for Q(
√

2,
√

3) is B = {1,
√

2,
√

3,
√

6}.
We’ll prove that the span of B is indeed Q(

√
2,
√

3) to show that it is a vector space. We’ll first prove
that B is linearly independent.

Suppose there are c1, c2, c3, c4 ∈ Q not all zero such that

c1 + c2
√

2 + c3
√

3 + c4
√

6 = 0.

Then (after rearranging and squaring)

c2
√

2 + c3
√

3 = −c1 − c4
√

6

2c2 + 3c23 + 2c2c3
√

6 = c21 + 6c24 + 2c1c4
√

6

2c22 + 3c23 − c21 − 6c24 = (2c1c4 − 2c2c3)
√

6.

Note that the left side is rational and that 2c1c4− 2c2c3 is rational. If 2c1c4− 2c2c3 6= 0, then
√

6 ∈ Q,
which is a contradiction.

Therefore 2c1c4 − 2c2c3 = 0, so 2c22 + 3c23 − c21 − 6c24 = 0 as well. Since we can scale by any positive
integer, we may assume c1, c2, c3, c4 are integers with gcd(c1, c2, c3, c4) = 1. If c4 = 0, then c2c3 = 0 so
c2 = 0 or c3 = 0. When c2 = 0 we have c3

√
3 = −c1 which implies that c1 = c3 = 0 or that

√
3 ∈ Q.

Both are not possible. In the case c3 = 0 we have
√

2 ∈ Q or c1 = c2 = c3 = c4 = 0. Therefore we may
assume c4 6= 0.

We have 2c22 +3c23 = c21 +6c24 with all integers and gcd(c1, c2, c3, c4) = 1. Then modulo 3 we have 2c22 ≡
c21 mod 3. But x2 ≡ 0, 1,mod3, therefore 2c22 ≡ 0, 2 mod 3 and c21 ≡ 0, 1 mod 3, so c2 ≡ c1 ≡ 0 mod 3.
Therefore c2 = 3c′2, c1 = 3c′1. But then

18c′22 + 3c23 = 9c′21 + 6c24

6c′22 + c23 = 3c′21 + 2c24.

But then c23 ≡ 2c24 mod 3. Therefore, c3 ≡ c4 mod 3. But then c1, c2, c3, c4 are all multiples of 3,
contradicting that gcd(c1, c2, c3, c4) = 1. Therefore, {1,

√
2,
√

3,
√

6} is linearly independent.

Therefore Span{1,
√

2,
√

3}Q(
√

2,
√

3) ⊂ Span{1,
√

2,
√

3,
√

6}.
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3. Let F be a field and denote the set of n-tuples of F by Fn. Given vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) in Fn and α in F , define vector addition by

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

and scalar multiplication by

αu = α(u1, . . . , un) = (αu1, . . . , αun).

Prove that Fn is a vector space of dimension n under these operations.

Solution 3. To check closed under addition: Since ui + vi ∈ F , for all i = 1, 2, . . . , n, then u+ v is in
Fn.

Since αui ∈ F (because α ∈ F ), then αu ∈ Fn. Therefore Fn is a vector space over F .

Now we need to verify the dimension. We need to show ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with the 1 being
in the i-th position form a basis for Fn. Suppose

n∑
i=1

ciei = 0.

Then the vector (c1, c2, . . . , cn) is zero. But that means c1, c2, . . . , cn are all zero. Therefore the ei’s
are linearly independent. Now for any vector u we have

u =

n∑
i=1

uiei.

Therefore u is in the span of the ei’s. Therefore we have a basis of n elements.

4. Which of the following sets are subspaces of R3? If the set is indeed a subspace, find a basis for the
subspace and compute its dimension.

(a) {(x1, x2, x3) : 3x1 − 2x2 + x3 = 0}
(b) {(x1, x2, x3) : 3x1 + 4x3 = 0, 2x1 − x2 + x3 = 0}
(c) {(x1, x2, x3) : x1 − 2x2 + 2x3 = 2}
(d) {(x1, x2, x3) : 3x1 − 2x22 = 0}
Solution 4.

(a) It is a subspace. Suppose (x1, x2, x3), (y1, y2, y3) are in the set. Then 3x1 − 2x2 + x3 = 0 and
3y1 − 2y2 + y3 = 0, so (3(x1 + y1)− 2(x2 + y2) + (x3 + y3) = 0, so (x1 + y1, x2 + y2, x3 + y3 is in
the set. With respect to scalar multiple, 3(αx1)− 2(αx2) + αx3 = α(3x1 − 2x2 + x3) = 0.

To find the dimension. Note that x3 = −3x1 + 2x2. Once x1, x2 are selected, x3 is fixed. The
dimension is ≤ 2. It cannot be one, since not all terms are multiples of one of them. Therefore,
the dimension is 2.

Another way to solve this is to see that T ((x1, x2, x3)) = 3x1−2x2 +x3 is a linear transformation.
This set is the kernel, so it is a subspace. The dimension of the kernel is 3 minus the dimension
of the range. But the range is R, so it has dimension 1. Therefore, the kernel has dimension 2.

(b) It is a subspace. Indeed, suppose (x1, x2, x3), (y1, y2, y3) are in the set and α is a scalar. We know
3x1 + 4x3 = 0 and 2x1 − x2 + x3 = 0, so 3(αx1) + 4(αx3) = 0 and 2(αx1) − (αx2) + (αx3) = 0.
Also

3(x1 + y1) + 4(x3 + y3) = (3x1 + 4x3) + (3y1 + 4y3) = 0,

and
2(x1 + y1)− (x2 + y2) + (x3 + y3) = (2x1 − x2 + x3) + (2y1 − y2 + y3) = 0.

For the dimension, note that x1 = − 4
3x3 and that

x2 = 2x1 + x3 = −8

3
x3 + x3 = −5

3
x3.

Therefore, once x3 is chosen, then x1, x2 are fixed. The dimension is therefore 1.
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(c) It is not a subspace. Note (0, 0, 2) and (0,−1, 0) are in the set but (0,−1, 2) is not.

(d) Note (2/3, 1, 0) and (2/3,−1, 0) are in the set. Yet their sum is (4/3, 0, 0) is not in the set since
3(4/3)− 2(0)2 = 4 6= 0.

5. Let V be a vector space of dimension n. Prove each of the following statements.

(a) If S = {v1, . . . , vn} is a set of linearly independent vectors for V , then S is a basis for V .

(b) If S = {v1, . . . , vn} spans V , then S is a basis for V .

(c) If S = {v1, . . . , vk} is a set of linearly independent vectors for V with k < n, then there exist
vectors vk+1, . . . , vn such that

{v1, . . . , vk, vk+1, . . . , vn}

is a basis for V .

Solution 5.

(a) Suppose it was not a basis. Then there exists v ∈ V such that v is not in the span of {v1, v2, · · · , vn}.
Therefore {v1, · · · , vn, v} is a linearly independent set. But this is impossible (as proved in problem
7).

(b) Suppose it’s not linearly independent. Then

vn =

n−1∑
i=1

civi,

for some ci ∈ F. But then {v1, v2, . . . , vn−1} is a span of V . Now consider the basis of V with n
vectors. As proved in problem 7, this basis would be linearly dependent. That’s a contradiction.
Therefore {v1, · · · , vn} is linearly independent.

(c) The proof of this is the construction described in the solution of problem 7.

6. Prove that any set of vectors containing 0 is linearly dependent.

Solution 6. Let {v1, v2, . . . , vr} be a set of vector containing 0. Without loss of generality, let v1 = 0.
Then

v1 + 0v2 + · · ·+ 0vr = 0.

But the coefficient of v1 6= 0, therefore the set is linearly dependent.

7. If a vector space V is spanned by n vectors, show that any set of m vectors in V must be linearly
dependent for m > n.

Solution 7. Let {v1, . . . , vn} span V and let {u1, . . . , um} be m vectors in V . Suppose for the sake of
contradiction that {u1, u2, . . . , um} is linearly independent. Since {v1, . . . , vn} spans V , then

u1 =

n∑
i=1

civi.

If u1 = 0, then {u1, . . . , um} is not linearly independent, so at least one of the ci’s is nonzero. Reorder
the vectors {v1, . . . , vn} to force c1 6= 0. Therefore

v1 =
1

c1
(u1 − c2v2 − c3v3 − · · · − cnvn) .

Therefore v1 is in the span of {u1, v2, v3, . . . , vn}. But since v2, v3, . . . , vn are also in that span, then
{u1, v2, . . . , vn} spans all of V . Therefore, there exist integers c1, c2, . . . , cn such that

u2 = c1u1 + c2v2 + c3v3 + · · ·+ cnvn.
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Note that since {u1, u2} are independent, then c2v2 + · · · + cnvn 6= 0. Therefore, there’s at least one
nonzero coefficient. Reordering, we can force that coefficient to be c2 6= 0. But then

v2 =
1

c2
(u2 − c1u1 − c3v3 − · · · − cnvn) .

Therefore v2 is in the span of {u1, u2, v3, · · · , vn}. As before, this implies {u1, u2, v3, v4, · · · , vn} spans
V . Therefore we can write u3 in terms of these vectors and by similar reasoning conclude that
{u1, u2, u3, v4, v5, · · · , vn} spans V . We can continue inductively to eventually show {u1, u2, . . . , un}
spans V . We have m > n, so m ≥ n+ 1. Consider un+1. Since {u1, . . . , un} spans V , then

un+1 = c1u1 + c2u2 + · · ·+ cnun.

Therefore {u1, u2, . . . , un, un+1} is linearly dependent. Contradiction!

Therefore {u1, u2, . . . , um} is linearly dependent.

8. Linear Transformations. Let V and W be vector spaces over a field F , of dimensions m and n,
respectively. If T : V →W is a map satisfying

T (u+ v) = T (u) + T (v)

T (αv) = αT (v)

for all α ∈ F and all u, v ∈ V , then T is called a linear transformation from V into W .

(a) Prove that the kernel of T , ker(T ) = {v ∈ V : T (v) = 0}, is a subspace of V . The kernel of T is
sometimes called the null space of T .

(b) Prove that the range or range space of T , R(V ) = {w ∈ W : T (v) = w for some v ∈ V }, is a
subspace of W .

(c) Show that T : V →W is injective if and only if ker(T ) = {0}.
(d) Let {v1, . . . , vk} be a basis for the null space of T . We can extend this basis to be a basis
{v1, . . . , vk, vk+1, . . . , vm} of V . Why? Prove that {T (vk+1), . . . , T (vm)} is a basis for the range
of T . Conclude that the range of T has dimension m− k.

(e) Let dimV = dimW . Show that a linear transformation T : V → W is injective if and only if it
is surjective.

Solution 8.

(a) Let u,w ∈ ker(T ) and α is a scalar. Since u,w ∈ T , then T (u) = T (w) = 0. Since T is a linear
transformation, then

T (u+ w) = T (u) + T (w) = 0 + 0 = 0

T (αu) = αT (u) = 0.

Therefore ker(T ) is a subspace of V .

(b) Let u,w ∈ R(V ). Therefore, there exist r, s ∈ V such that T (r) = u, T (s) = w. But then

T (r) + T (s) = T (r + s) = u+ w,

which implies that u + w ∈ R(V ). Also T (αr) = αT (r) = αu. Therefore αu ∈ R(V ). Therefore
R(V ) is a subspace.

(c) Suppose T is one-to-one. Then T (u) = T (v) implies u = v. Suppose k ∈ kerT . Then T (k) = 0 =
T (0). But T is one-to-one, so k = 0. Therefore ker(T ) = {0}.
Now suppose that ker(T ) = {0}. Let u, v be such that T (u) = T (v). Then T (u) − T (v) = 0, so
T (u− v) = 0. Therefore u− v ∈ kerT . Therefore u− v = 0, so u = v.
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(d) Suppose {u1, u2, · · · , um} is a basis of V . By the same strategy as shown in the proof of the
previous exercise, we can show that {v1, v2, · · · , vk, uk+1, uk+2, · · · , um} spans V and is linearly
independent, so it’s a basis. We can now let vj = uj for j = k+ 1, k+ 2, · · · ,m and conclude that
there is a basis of V of the form {v1, v2, · · · , vm}.
Let x ∈ R(V ). Then T (v) = x for some v ∈ V . Therefore

v = c1v1 + c2v2 + · · ·+ cmvm.

But then

T (v) = T ((c1v1 + c2v2 + · · ·+ ckvk) + (ck+1vk+1 + · · ·+ cmvm))

= T (c1v1 + · · ·+ ckvk) + T (ck+1vk+1 + · · ·+ cmvm)

= c1T (v1) + · · ·+ ckT (vk) + ck+1T (vk+1) + · · ·+ cmT (vm)

= ck+1T (vk+1) + · · · cmT (vm).

At the end we used that T (v1) = T (v2) = · · ·T (vk) = 0 since v1, v2, . . . , vk ∈ ker(T ). But all of
this implies that x is in the span of {T (vk+1), T (vk+2), . . . , T (vm)}. To conclude we need to show
that {T (vk+1), T (vk+2), . . . , T (vm)} is linearly independent.

Suppose
ck+1T (vk+1) + ck+2T (vk+2) + · · ·+ cmT (vm) = 0.

But since T is a linear transformation, we have

T (ck+1vk+1 + ck+2vk+2 + · · ·+ cmT (vm)) = 0.

Therefore
m∑

i=k+1

civi ∈ ker(T ).

But that means there exist c1, c2, . . . , ck such that

m∑
i=k+1

civi =

k∑
i=1

civi.

Therefore

c1v1 + c2v2 + · · · ckvk + (−ck+1)vk+1 + (−ck+2)vk+2 + · · ·+ (−cm)vm = 0.

Since {v1, v2, · · · , vm} are linearly independent, then

c1 = c2 = · · · = cm = 0.

Therefore {T (vk+1), T (vk+2), · · · , T (vm)} is linearly independent. Therefore it is a basis for R(V )
and the dimension of R(V ) is m− k.

(e) We know m = n. Suppose T is one-to-one, then ker(T ) = {0}. That means the dimension of
R(V ) is m− 0 = m = n. Therefore R(V ) has the same dimension as W , therefore R(V ) = W .

If T is onto, then R(V ) = W . But that means the dimension of the range is n = m. Therefore
the dimension of the null space is m−m = 0. That means ker(T ) = {0}, so T is one-to-one.

9. Let V andW be finite dimensional vector spaces of dimension n over a field F . Suppose that T : V →W
is a vector space isomorphism. If {v1, . . . , vn} is a basis of V , show that {T (v1), . . . , T (vn)} is a basis
of W . Conclude that any vector space over a field F of dimension n is isomorphic to Fn.

Solution 9. Since T is a linear transformation and it’s isomorphic, so it’s one-to-one, then the null
space is {0}. Therefore (as in 8d), the basis for R(V ) is {T (v1), · · · , T (vn)}. But R(V ) = W since T
is onto.
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