Homework 5

Most problems below are from Judson.

- 1. Show that each of the following numbers is algebraic over \mathbb{Q} by finding the minimal polynomial of the number over \mathbb{Q} .
 - (a) $\sqrt{1/3 + \sqrt{7}}$
 - (b) $\sqrt{3} + \sqrt[3]{5}$
 - (c) $\sqrt{3} + \sqrt{2}i$
- 2. Show that each of the following numbers is algebraic over \mathbb{Q} by finding the minimal polynomial of the number over \mathbb{Q} .
 - (a) $\cos \theta + i \sin \theta$ for $\theta = 2\pi/n$ with $n \in \mathbb{N}$
 - (b) $\sqrt[3]{2-i}$
- 3. Find a basis for each of the following field extensions. What is the degree of each extension?
 - (a) $\mathbb{Q}(\sqrt{3},\sqrt{6})$ over \mathbb{Q}
 - (b) $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})$ over \mathbb{Q}
 - (c) $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}
- 4. Find a basis for each of the following field extensions. What is the degree of each extension?
 - (a) $\mathbb{Q}(\sqrt{3},\sqrt{5},\sqrt{7})$ over \mathbb{Q}
 - (b) $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$
 - (c) $\mathbb{Q}(\sqrt{2},\sqrt{6}+\sqrt{10})$ over $\mathbb{Q}(\sqrt{3}+\sqrt{5})$
- 5. Determine all of the subfields of $\mathbb{Q}(\sqrt[4]{3}, i)$.
- 6. Show that $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ is a field with eight elements. Construct a multiplication table for the multiplicative group of the field.
- 7. Prove or disprove: π is algebraic over $\mathbb{Q}(\pi^3)$.
- 8. Let p(x) be a nonconstant polynomial of degree n in F[x]. Prove that there exists a splitting field E for p(x) such that $[E:F] \leq n!$.
- 9. Prove or disprove: $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.
- 10. Show that $\mathbb{Q}(\sqrt{3}, \sqrt{7}) = \mathbb{Q}(\sqrt{3} + \sqrt{7})$. Extend your proof to show that $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$, where gcd(a, b) = 1.