
Homework 5

Most problems below are from Judson.

1. Show that each of the following numbers is algebraic over Q by finding the minimal polynomial of the
number over Q.

(a)
√

1/3 +
√

7

(b)
√

3 + 3
√

5

(c)
√

3 +
√

2 i

Solution 1.

(a) Let x =
√

1/3 +
√

7, then x2 − 1/3 =
√

7, so (x2 − 1/3)2 = 7. Therefore,

The minimal polynomial is x4 − 2
3x

2 − 62
9 .

(b) The degree of the polynomial should be 6. The basis for the field should be {1,
√

3, 3
√

5,
√

3 3
√

5, 3
√

25,
√

3 3
√

5}.
Let α =

√
3 + 3
√

5. The strategy is to write 1, α, α2, α3, α4, α5, α6 in terms of the basis.

α0 = 1 + 0
√

3 + 0
3
√

5 + 0
√

3
3
√

5 + 0
3
√

25 + 0
√

3
3
√

5

α1 = 0 +
√

3 +
3
√

5 + 0
√

3
3
√

5 + 0
3
√

25 + 0
√

3
3
√

5

α2 = 3 + 0
√

3 + 0
3
√

5 + 2
√

3
3
√

5 +
3
√

25 + 0
√

3
3
√

25

α3 = 5 + 3
√

3 + 9
3
√

5 + 0
√

3
3
√

5 + 0
3
√

25 + 3
√

3
3
√

25

α4 = 9 + 20
√

3 + 5
3
√

5 + 12
√

3
3
√

5 + 18
3
√

25 + 0
√

3
3
√

25

α5 = 150 + 9
√

3 + 45
3
√

5 + 25
√

3
3
√

5 + 5
3
√

25 + 30
√

3
3
√

25

α6 = 52 + 300
√

3 + 225
3
√

5 + 54
√

3
3
√

5 + 135
3
√

25 + 30
√

3
3
√

25

These seven vectors must be linearly dependent. To figure out the linear dependence we can
analyze the matrix 

1 0 3 5 9 150 52
0 1 0 3 20 9 300
0 1 0 9 5 45 225
0 0 2 0 12 25 54
0 0 1 0 18 5 135
0 0 0 3 0 30 30


After reducing it using Gaussian row reduction we get

1 0 0 0 0 0 2
0 1 0 0 0 0 90
0 0 1 0 0 0 −27
0 0 0 1 0 0 10
0 0 0 0 1 0 9
0 0 0 0 0 1 0
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Therefore
α6 = 2 + 90α− 27α2 + 10α+ 9α4.

Therefore, the minimal polynomial is

x6 − 9x4 − 10x3 + 27x2 − 90x− 2.

(c) The basis is {1,
√

3,
√

2i,
√

6i}. Let α =
√

3 +
√

2i. We have

α0 = 1 + 0
√

3 + 0
√

2i+ 0
√

6i

α1 = 0 + 1
√

3 + 1
√

2i+ 0
√

6i

α2 = 1 + 0
√

3 + 0
√

2i+ 2
√

6i

α3 = 0 +−3
√

3 + 7
√

2i+ 0
√

6i

α4 = −23 + 0
√

3 + 0
√

2i+ 4
√

6i

We now get the matrix 
1 0 1 0 −23
0 1 0 −3 0
0 1 0 7 0
0 0 2 0 4


After Gaussian row reduction we get 

1 0 0 0 −25
0 1 0 0 0
0 0 1 0 2
0 0 0 1 0


Therefore the minimal polynomial is x4 − 2x2 + 25.

2. Show that each of the following numbers is algebraic over Q by finding the minimal polynomial of the
number over Q.

(a) cos θ + i sin θ for θ = 2π/n with n ∈ N

(b)
√

3
√

2− i

Solution 2.

(a) cos(θ) + i sin(θ) is a root of xn − 1. We want the minimal polynomial though. The minimal
polynomial is Φn(x) which satisfies the following recursive equation∏

d|n

Φd(x) = xn − 1.

So Φ1(x) = x − 1, Φ2(x) = x + 1, Φ3(x) = x2 + x + 1, Φ4(x) = x4−1
(x−1)(x+1) = x2 + 1, Φ5(x) =

x4 + x3 + x2 + x+ 1, Φ6(x) = x6−1
(x−1)(x+1)(x2+x+1) = x2 − x+ 1, and so on.

(b) The degree of 3
√

2 is 3, the degree of 3
√

2 − i is 6, therefore the degree of
√

3
√

2− i is 12. Let

α =
√

3
√

2− i. A reasonable basis for the field Q( 3
√

2− i) is

{1, i, 3
√

2,
3
√

2i,
3
√

4,
3
√

4i}.
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α0 = 1

α2 = −i+
3
√

2

α4 = −1− 2i
3
√

2 +
3
√

4

α6 = 2 + i− 3
3
√

2− 3i
3
√

4

α8 = 1− 8i+ 2
3
√

2 + 4i
3
√

2− 6
3
√

4

α10 = −20− i+ 5
3
√

2− 10i
3
√

2 + 2
3
√

4 + 10i
3
√

4

α12 = 3 + 40i− 30
3
√

2 + 6i
3
√

2 + 15
3
√

4− 12i
3
√

4

We row reduce the matrix 
1 0 −1 2 1 −20 3
0 −1 0 1 −8 −1 40
0 1 0 −3 2 5 −30
0 0 −2 0 4 −10 −6
0 0 1 0 −6 2 15
0 0 0 −3 0 10 −12


to get 

1 0 0 0 0 0 −5
0 1 0 0 0 0 −12
0 0 1 0 0 0 −3
0 0 0 1 0 0 4
0 0 0 0 1 0 −3
0 0 0 0 0 1 0


Therefore, the minimal polynomial is

x12 + 3x8 − 4x6 + 3x4 + 12x2 + 5.

3. Find a basis for each of the following field extensions. What is the degree of each extension?

(a) Q(
√

3,
√

6 ) over Q
(b) Q( 3

√
2, 3
√

3 ) over Q
(c) Q(

√
2, i) over Q

Solution 3.

(a) The basis is {1,
√

2,
√

3,
√

6}. The degree is 4.

(b) The basis is {1, 3
√

2, 3
√

4, 3
√

3, 3
√

6, 3
√

12, 3
√

9, 3
√

18, 3
√

36}. The degree is 9.

(c) The basis is {1,
√

2, i,
√

2 i}. The degree is 4.

4. Find a basis for each of the following field extensions. What is the degree of each extension?

(a) Q(
√

3,
√

5,
√

7 ) over Q
(b) Q(

√
8 ) over Q(

√
2 )

(c) Q(
√

2,
√

6 +
√

10 ) over Q(
√

3 +
√

5 )

Solution 4.

(a) The basis is {1,
√

3,
√

5,
√

7,
√

15,
√

21,
√

35,
√

105}. The degree is 8.

(b) The basis is {1}. The degree is 1. That is because
√

8 = 2
√

2 ∈ Q(
√

2).
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(c) The basis is {1,
√

2}. The degree is 2. (We are using that
√

2(
√

3 +
√

5) =
√

6 +
√

10, therefore
Q(
√

2,
√

6 +
√

10) = Q(
√

3 +
√

5)(
√

2).)

5. Determine all of the subfields of Q( 4
√

3, i).

Solution 5. Q,Q(
√

3),Q(i),Q(
√

3 i),Q( 4
√

3),Q(
√

3, i),Q( 4
√

3 i),Q( 4
√

3− 4
√

3 i),Q( 4
√

3+ 4
√

3 i),Q( 4
√

3, i).

6. Show that Z2[x]/〈x3 + x + 1〉 is a field with eight elements. Construct a multiplication table for the
multiplicative group of the field.

Solution 6. Let α be a root of x3 + x+ 1, then the multiplication table is:

0 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1
0 0 0 0 0 0 0 0 0
1 0 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1
α 0 α α2 α2 + α α+ 1 1 α2 + α+ 1 α2 + 1

α+ 1 0 α+ 1 α2 + α α2 + 1 α2 + α+ 1 α2 1 α
α2 0 α2 α+ 1 α2 + α+ 1 α2 + α α α2 + 1 1

α2 + 1 0 α2 + 1 1 α2 α α2 + α+ 1 α+ 1 α2 + α
α2 + α 0 α2 + α α2 + α+ 1 1 α2 + 1 α+ 1 α α2

α2 + α+ 1 0 α2 + α+ 1 α2 + 1 α 1 α2 + α α2 α+ 1

To illustrate how to calculate. Consider (α2 + 1)(α + 1). This would be α3 + α2 + α + 1. Since we
know α3 + α+ 1 = 0, then α3 + α2 + α+ 1 = α2.

7. Prove or disprove: π is algebraic over Q(π3).

Solution 7. It is algebraic since it is a root of x3 − π3 ∈ Q(π3)[x].

8. Let p(x) be a nonconstant polynomial of degree n in F [x]. Prove that there exists a splitting field E
for p(x) such that [E : F ] ≤ n!.

Solution 8. Suppose α1, α2, . . . , αn are the roots of p. Then we want to show that [F (α1, α2, . . . , αn) :
F ] ≤ n. Let’s start by considering F (α1). This one has degree ≤ n (if p(x) is irreducible, the
degree is exactly n, otherwise it is smaller). We knnow [F (α1) : F ] ≤ n. Now we want to consider
(F (α1))(α2). Since p(x) = (x−α1)p1(x) in F (α1)[x], then [F (α1, α2) : F (α1)] ≤ n−1. Similarly, since
p(x) = (x− α1)(x− α2) · · · (x− αi)pi(x) in F (α1, α2, . . . , αi)[x],

[F (α1, α2, . . . , αi+1) : F (α1, α2, . . . , αi)] ≤ n− i.

Therefore

[F (α1, α2, . . . , αn) : F ]

= [F (α1, . . . , αn) : F (α1, . . . , αn−1)][F (α1, . . . , αn−1) : F (α1, . . . , αn−2)] · · · [F (α1) : F ]

≤ n(n− 1) · · · 1 = n!.

9. Prove or disprove: Q(
√

2 ) ∼= Q(
√

3 ).

Solution 9. They are not isomorphic. Let’s prove it. Suppose ψ : Q(
√

2) → Q(
√

3) was an isomor-
phism. Then it must be a ring homomorphism and a bijection. We have ψ(0) = ψ(0+0) = ψ(0)+ψ(0),
so ψ(0) = 0. Similarly ψ(1) = ψ(1 · 1) = ψ(1)ψ(1), which implies ψ(1) = 0 or ψ(1) = 1. Since ψ is a
bijection, ψ(1) 6= 0, so ψ(1) = 1. Now ψ(2) = ψ(

√
2
√

2) = ψ(
√

2)ψ(
√

2). But ψ(2) = ψ(1) + ψ(1) = 2.
Therefore ψ(

√
2)2 = 2. This means ψ(

√
2) is

√
2 or −

√
2. Neither of these is in Q(

√
3). Therefore they

are not isomorphic.

10. Show that Q(
√

3,
√

7 ) = Q(
√

3 +
√

7 ). Extend your proof to show that Q(
√
a,
√
b ) = Q(

√
a +
√
b ),

where gcd(a, b) = 1.
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Solution 10.
√

3+
√

7 ∈ Q(
√

2,
√

3) because fields are closed under addition. But then Q(
√

3+
√

7) ⊆
Q(
√

2,
√

3).

Since
√

3 +
√

7 ∈ Q(
√

3 +
√

7) = B, then (
√

3 +
√

7)2 = 10 + 2
√

21 ∈ B But that means
√

21 ∈ B.
Therefore

√
21(
√

3+
√

7) ∈ B, but that means 3
√

7+7
√

3 ∈ B. But then (3
√

7+7
√

3)−7(
√

3+
√

7) =
−4
√

7 ∈ B. Therefore
√

7 ∈ B. Also (3
√

7 + 7
√

3) − 3(
√

3 +
√

7) = 4
√

3 ∈ B, so
√

3 ∈ B. Therefore
Q(
√

3,
√

7) ⊆ B = Q(
√

3 +
√

7). We now have equality.

The proof for arbitrary a, b is similar. Let A = Q(
√
a,
√
b) and B = Q(

√
a +
√
b). B ⊆ A since√

a+
√
b ∈ A.

We have (
√
a+
√
b)2 ∈ B, so (a+ b) + 2

√
ab ∈ B. But then

√
ab ∈ B. Then (

√
a+
√
b)(
√
ab) ∈ B, but

(
√
a+
√
b)
√
ab = b

√
a+ a

√
b.

Therefore

(b
√
a+ a

√
b)− a(

√
a+
√
b) = (b− a)

√
a

(b
√
a+ a

√
b)− b(

√
a+
√
b) = (a− b)

√
b

Since a 6= b, then (a− b), (b− a) ∈ Q, so
√
a,
√
b ∈ B. Therefore B ⊆ A, which implies A = B.
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