Homework 5

Most problems below are from Judson.

1. Show that each of the following numbers is algebraic over \mathbb{Q} by finding the minimal polynomial of the number over \mathbb{Q}.
(a) $\sqrt{1 / 3+\sqrt{7}}$
(b) $\sqrt{3}+\sqrt[3]{5}$
(c) $\sqrt{3}+\sqrt{2} i$

Solution 1.

(a) Let $x=\sqrt{1 / 3+\sqrt{7}}$, then $x^{2}-1 / 3=\sqrt{7}$, so $\left(x^{2}-1 / 3\right)^{2}=7$. Therefore,

The minimal polynomial is $x^{4}-\frac{2}{3} x^{2}-\frac{62}{9}$.
(b) The degree of the polynomial should be 6 . The basis for the field should be $\{1, \sqrt{3}, \sqrt[3]{5}, \sqrt{3} \sqrt[3]{5}, \sqrt[3]{25}, \sqrt{3} \sqrt[3]{5}\}$. Let $\alpha=\sqrt{3}+\sqrt[3]{5}$. The strategy is to write $1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}$ in terms of the basis.

$$
\begin{aligned}
& \alpha^{0}=1+0 \sqrt{3}+0 \sqrt[3]{5}+0 \sqrt{3} \sqrt[3]{5}+0 \sqrt[3]{25}+0 \sqrt{3} \sqrt[3]{5} \\
& \alpha^{1}=0+\sqrt{3}+\sqrt[3]{5}+0 \sqrt{3} \sqrt[3]{5}+0 \sqrt[3]{25}+0 \sqrt{3} \sqrt[3]{5} \\
& \alpha^{2}=3+0 \sqrt{3}+0 \sqrt[3]{5}+2 \sqrt{3} \sqrt[3]{5}+\sqrt[3]{25}+0 \sqrt{3} \sqrt[3]{25} \\
& \alpha^{3}=5+3 \sqrt{3}+9 \sqrt[3]{5}+0 \sqrt{3} \sqrt[3]{5}+0 \sqrt[3]{25}+3 \sqrt{3} \sqrt[3]{25} \\
& \alpha^{4}=9+20 \sqrt{3}+5 \sqrt[3]{5}+12 \sqrt{3} \sqrt[3]{5}+18 \sqrt[3]{25}+0 \sqrt{3} \sqrt[3]{25} \\
& \alpha^{5}=150+9 \sqrt{3}+45 \sqrt[3]{5}+25 \sqrt{3} \sqrt[3]{5}+5 \sqrt[3]{25}+30 \sqrt{3} \sqrt[3]{25} \\
& \alpha^{6}=52+300 \sqrt{3}+225 \sqrt[3]{5}+54 \sqrt{3} \sqrt[3]{5}+135 \sqrt[3]{25}+30 \sqrt{3} \sqrt[3]{25}
\end{aligned}
$$

These seven vectors must be linearly dependent. To figure out the linear dependence we can analyze the matrix

$$
\left(\begin{array}{ccccccc}
1 & 0 & 3 & 5 & 9 & 150 & 52 \\
0 & 1 & 0 & 3 & 20 & 9 & 300 \\
0 & 1 & 0 & 9 & 5 & 45 & 225 \\
0 & 0 & 2 & 0 & 12 & 25 & 54 \\
0 & 0 & 1 & 0 & 18 & 5 & 135 \\
0 & 0 & 0 & 3 & 0 & 30 & 30
\end{array}\right)
$$

After reducing it using Gaussian row reduction we get

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 90 \\
0 & 0 & 1 & 0 & 0 & 0 & -27 \\
0 & 0 & 0 & 1 & 0 & 0 & 10 \\
0 & 0 & 0 & 0 & 1 & 0 & 9 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Therefore

$$
\alpha^{6}=2+90 \alpha-27 \alpha^{2}+10 \alpha+9 \alpha^{4}
$$

Therefore, the minimal polynomial is

$$
x^{6}-9 x^{4}-10 x^{3}+27 x^{2}-90 x-2
$$

(c) The basis is $\{1, \sqrt{3}, \sqrt{2} i, \sqrt{6} i\}$. Let $\alpha=\sqrt{3}+\sqrt{2} i$. We have

$$
\begin{aligned}
& \alpha^{0}=1+0 \sqrt{3}+0 \sqrt{2} i+0 \sqrt{6} i \\
& \alpha^{1}=0+1 \sqrt{3}+1 \sqrt{2} i+0 \sqrt{6} i \\
& \alpha^{2}=1+0 \sqrt{3}+0 \sqrt{2} i+2 \sqrt{6} i \\
& \alpha^{3}=0+-3 \sqrt{3}+7 \sqrt{2} i+0 \sqrt{6} i \\
& \alpha^{4}=-23+0 \sqrt{3}+0 \sqrt{2} i+4 \sqrt{6} i
\end{aligned}
$$

We now get the matrix

$$
\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & -23 \\
0 & 1 & 0 & -3 & 0 \\
0 & 1 & 0 & 7 & 0 \\
0 & 0 & 2 & 0 & 4
\end{array}\right)
$$

After Gaussian row reduction we get

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -25 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Therefore the minimal polynomial is $x^{4}-2 x^{2}+25$.
2. Show that each of the following numbers is algebraic over \mathbb{Q} by finding the minimal polynomial of the number over \mathbb{Q}.
(a) $\cos \theta+i \sin \theta$ for $\theta=2 \pi / n$ with $n \in \mathbb{N}$
(b) $\sqrt{\sqrt[3]{2}-i}$

Solution 2.

(a) $\cos (\theta)+i \sin (\theta)$ is a root of $x^{n}-1$. We want the minimal polynomial though. The minimal polynomial is $\Phi_{n}(x)$ which satisfies the following recursive equation

$$
\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1
$$

So $\Phi_{1}(x)=x-1, \Phi_{2}(x)=x+1, \Phi_{3}(x)=x^{2}+x+1, \Phi_{4}(x)=\frac{x^{4}-1}{(x-1)(x+1)}=x^{2}+1, \Phi_{5}(x)=$ $x^{4}+x^{3}+x^{2}+x+1, \Phi_{6}(x)=\frac{x^{6}-1}{(x-1)(x+1)\left(x^{2}+x+1\right)}=x^{2}-x+1$, and so on.
(b) The degree of $\sqrt[3]{2}$ is 3 , the degree of $\sqrt[3]{2}-i$ is 6 , therefore the degree of $\sqrt{\sqrt[3]{2}-i}$ is 12 . Let $\alpha=\sqrt{\sqrt[3]{2}-i}$. A reasonable basis for the field $\mathbb{Q}(\sqrt[3]{2}-i)$ is

$$
\{1, i, \sqrt[3]{2}, \sqrt[3]{2} i, \sqrt[3]{4}, \sqrt[3]{4} i\}
$$

$$
\begin{aligned}
\alpha^{0} & =1 \\
\alpha^{2} & =-i+\sqrt[3]{2} \\
\alpha^{4} & =-1-2 i \sqrt[3]{2}+\sqrt[3]{4} \\
\alpha^{6} & =2+i-3 \sqrt[3]{2}-3 i \sqrt[3]{4} \\
\alpha^{8} & =1-8 i+2 \sqrt[3]{2}+4 i \sqrt[3]{2}-6 \sqrt[3]{4} \\
\alpha^{10} & =-20-i+5 \sqrt[3]{2}-10 i \sqrt[3]{2}+2 \sqrt[3]{4}+10 i \sqrt[3]{4} \\
\alpha^{12} & =3+40 i-30 \sqrt[3]{2}+6 i \sqrt[3]{2}+15 \sqrt[3]{4}-12 i \sqrt[3]{4}
\end{aligned}
$$

We row reduce the matrix

$$
\left(\begin{array}{ccccccc}
1 & 0 & -1 & 2 & 1 & -20 & 3 \\
0 & -1 & 0 & 1 & -8 & -1 & 40 \\
0 & 1 & 0 & -3 & 2 & 5 & -30 \\
0 & 0 & -2 & 0 & 4 & -10 & -6 \\
0 & 0 & 1 & 0 & -6 & 2 & 15 \\
0 & 0 & 0 & -3 & 0 & 10 & -12
\end{array}\right)
$$

to get

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & -5 \\
0 & 1 & 0 & 0 & 0 & 0 & -12 \\
0 & 0 & 1 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Therefore, the minimal polynomial is

$$
x^{12}+3 x^{8}-4 x^{6}+3 x^{4}+12 x^{2}+5
$$

3. Find a basis for each of the following field extensions. What is the degree of each extension?
(a) $\mathbb{Q}(\sqrt{3}, \sqrt{6})$ over \mathbb{Q}
(b) $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})$ over \mathbb{Q}
(c) $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}

Solution 3.

(a) The basis is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. The degree is 4 .
(b) The basis is $\{1, \sqrt[3]{2}, \sqrt[3]{4}, \sqrt[3]{3}, \sqrt[3]{6}, \sqrt[3]{12}, \sqrt[3]{9}, \sqrt[3]{18}, \sqrt[3]{36}\}$. The degree is 9 .
(c) The basis is $\{1, \sqrt{2}, i, \sqrt{2} i\}$. The degree is 4 .
4. Find a basis for each of the following field extensions. What is the degree of each extension?
(a) $\mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{7})$ over \mathbb{Q}
(b) $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$
(c) $\mathbb{Q}(\sqrt{2}, \sqrt{6}+\sqrt{10})$ over $\mathbb{Q}(\sqrt{3}+\sqrt{5})$

Solution 4.

(a) The basis is $\{1, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{15}, \sqrt{21}, \sqrt{35}, \sqrt{105}\}$. The degree is 8 .
(b) The basis is $\{1\}$. The degree is 1 . That is because $\sqrt{8}=2 \sqrt{2} \in \mathbb{Q}(\sqrt{2})$.
(c) The basis is $\{1, \sqrt{2}\}$. The degree is 2 . (We are using that $\sqrt{2}(\sqrt{3}+\sqrt{5})=\sqrt{6}+\sqrt{10}$, therefore $\mathbb{Q}(\sqrt{2}, \sqrt{6}+\sqrt{10})=\mathbb{Q}(\sqrt{3}+\sqrt{5})(\sqrt{2})$.
5. Determine all of the subfields of $\mathbb{Q}(\sqrt[4]{3}, i)$.

Solution 5. $\mathbb{Q}, \mathbb{Q}(\sqrt{3}), \mathbb{Q}(i), \mathbb{Q}(\sqrt{3} i), \mathbb{Q}(\sqrt[4]{3}), \mathbb{Q}(\sqrt{3}, i), \mathbb{Q}(\sqrt[4]{3} i), \mathbb{Q}(\sqrt[4]{3}-\sqrt[4]{3} i), \mathbb{Q}(\sqrt[4]{3}+\sqrt[4]{3} i), \mathbb{Q}(\sqrt[4]{3}, i)$.
6. Show that $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$ is a field with eight elements. Construct a multiplication table for the multiplicative group of the field.
Solution 6. Let α be a root of $x^{3}+x+1$, then the multiplication table is:

	0	1	α	$\alpha+1$	α^{2}	$\alpha^{2}+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$
0	0	0	0	0	0	0	0	0
1	0	1	α	$\alpha+1$	α^{2}	$\alpha^{2}+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$
α	0	α	α^{2}	$\alpha^{2}+\alpha$	$\alpha+1$	1	$\alpha^{2}+\alpha+1$	$\alpha^{2}+1$
$\alpha+1$	0	$\alpha+1$	$\alpha^{2}+\alpha$	$\alpha^{2}+1$	$\alpha^{2}+\alpha+1$	α^{2}	1	α
α^{2}	0	α^{2}	$\alpha+1$	$\alpha^{2}+\alpha+1$	$\alpha^{2}+\alpha$	α	$\alpha^{2}+1$	1
$\alpha^{2}+1$	0	$\alpha^{2}+1$	1	α^{2}	α	$\alpha^{2}+\alpha+1$	$\alpha+1$	$\alpha^{2}+\alpha$
$\alpha^{2}+\alpha$	0	$\alpha^{2}+\alpha$	$\alpha^{2}+\alpha+1$	1	$\alpha^{2}+1$	$\alpha+1$	α	α^{2}
$\alpha^{2}+\alpha+1$	0	$\alpha^{2}+\alpha+1$	$\alpha^{2}+1$	α	1	$\alpha^{2}+\alpha$	α^{2}	$\alpha+1$

To illustrate how to calculate. Consider $\left(\alpha^{2}+1\right)(\alpha+1)$. This would be $\alpha^{3}+\alpha^{2}+\alpha+1$. Since we know $\alpha^{3}+\alpha+1=0$, then $\alpha^{3}+\alpha^{2}+\alpha+1=\alpha^{2}$.
7. Prove or disprove: π is algebraic over $\mathbb{Q}\left(\pi^{3}\right)$.

Solution 7. It is algebraic since it is a root of $x^{3}-\pi^{3} \in \mathbb{Q}\left(\pi^{3}\right)[x]$.
8. Let $p(x)$ be a nonconstant polynomial of degree n in $F[x]$. Prove that there exists a splitting field E for $p(x)$ such that $[E: F] \leq n!$.

Solution 8. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of p. Then we want to show that $\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right.$: $F] \leq n$. Let's start by considering $F\left(\alpha_{1}\right)$. This one has degree $\leq n$ (if $p(x)$ is irreducible, the degree is exactly n, otherwise it is smaller). We knnow $\left[F\left(\alpha_{1}\right): F\right] \leq n$. Now we want to consider $\left(F\left(\alpha_{1}\right)\right)\left(\alpha_{2}\right)$. Since $p(x)=\left(x-\alpha_{1}\right) p_{1}(x)$ in $F\left(\alpha_{1}\right)[x]$, then $\left[F\left(\alpha_{1}, \alpha_{2}\right): F\left(\alpha_{1}\right)\right] \leq n-1$. Similarly, since $p(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{i}\right) p_{i}(x)$ in $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right)[x]$,

$$
\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i+1}\right): F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right)\right] \leq n-i
$$

Therefore

$$
\begin{aligned}
& {\left[F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): F\right]} \\
& =\left[F\left(\alpha_{1}, \ldots, \alpha_{n}\right): F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right]\left[F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right): F\left(\alpha_{1}, \ldots, \alpha_{n-2}\right)\right] \cdots\left[F\left(\alpha_{1}\right): F\right] \\
& \leq n(n-1) \cdots 1=n!
\end{aligned}
$$

9. Prove or disprove: $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.

Solution 9. They are not isomorphic. Let's prove it. Suppose $\psi: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{3})$ was an isomorphism. Then it must be a ring homomorphism and a bijection. We have $\psi(0)=\psi(0+0)=\psi(0)+\psi(0)$, so $\psi(0)=0$. Similarly $\psi(1)=\psi(1 \cdot 1)=\psi(1) \psi(1)$, which implies $\psi(1)=0$ or $\psi(1)=1$. Since ψ is a bijection, $\psi(1) \neq 0$, so $\psi(1)=1$. Now $\psi(2)=\psi(\sqrt{2} \sqrt{2})=\psi(\sqrt{2}) \psi(\sqrt{2})$. But $\psi(2)=\psi(1)+\psi(1)=2$. Therefore $\psi(\sqrt{2})^{2}=2$. This means $\psi(\sqrt{2})$ is $\sqrt{2}$ or $-\sqrt{2}$. Neither of these is in $\mathbb{Q}(\sqrt{3})$. Therefore they are not isomorphic.
10. Show that $\mathbb{Q}(\sqrt{3}, \sqrt{7})=\mathbb{Q}(\sqrt{3}+\sqrt{7})$. Extend your proof to show that $\mathbb{Q}(\sqrt{a}, \sqrt{b})=\mathbb{Q}(\sqrt{a}+\sqrt{b})$, where $\operatorname{gcd}(a, b)=1$.

Solution 10. $\sqrt{3}+\sqrt{7} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ because fields are closed under addition. But then $\mathbb{Q}(\sqrt{3}+\sqrt{7}) \subseteq$ $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
Since $\sqrt{3}+\sqrt{7} \in \mathbb{Q}(\sqrt{3}+\sqrt{7})=B$, then $(\sqrt{3}+\sqrt{7})^{2}=10+2 \sqrt{21} \in B$ But that means $\sqrt{21} \in B$. Therefore $\sqrt{21}(\sqrt{3}+\sqrt{7}) \in B$, but that means $3 \sqrt{7}+7 \sqrt{3} \in B$. But then $(3 \sqrt{7}+7 \sqrt{3})-7(\sqrt{3}+\sqrt{7})=$ $-4 \sqrt{7} \in B$. Therefore $\sqrt{7} \in B$. Also $(3 \sqrt{7}+7 \sqrt{3})-3(\sqrt{3}+\sqrt{7})=4 \sqrt{3} \in B$, so $\sqrt{3} \in B$. Therefore $\mathbb{Q}(\sqrt{3}, \sqrt{7}) \subseteq B=\mathbb{Q}(\sqrt{3}+\sqrt{7})$. We now have equality.
The proof for arbitrary a, b is similar. Let $A=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ and $B=\mathbb{Q}(\sqrt{a}+\sqrt{b})$. $B \subseteq A$ since $\sqrt{a}+\sqrt{b} \in A$.
We have $(\sqrt{a}+\sqrt{b})^{2} \in B$, so $(a+b)+2 \sqrt{a b} \in B$. But then $\sqrt{a b} \in B$. Then $(\sqrt{a}+\sqrt{b})(\sqrt{a b}) \in B$, but

$$
(\sqrt{a}+\sqrt{b}) \sqrt{a b}=b \sqrt{a}+a \sqrt{b}
$$

Therefore

$$
\begin{aligned}
& (b \sqrt{a}+a \sqrt{b})-a(\sqrt{a}+\sqrt{b})=(b-a) \sqrt{a} \\
& (b \sqrt{a}+a \sqrt{b})-b(\sqrt{a}+\sqrt{b})=(a-b) \sqrt{b}
\end{aligned}
$$

Since $a \neq b$, then $(a-b),(b-a) \in \mathbb{Q}$, so $\sqrt{a}, \sqrt{b} \in B$. Therefore $B \subseteq A$, which implies $A=B$.

