Homework 6

Book problems

1. Show that the regular 9 -gon is not constructible with straightedge and compass, but that the regular 20 -gon is.
2. Can a cube be constructed with three times the volume of a given cube?

Ancient Geometry chapter problems

3. Given a point A and a line ℓ through A. Describe how you would create, using only straightedge and compass, a line k that goes through A that satisfies that the small angle between k and ℓ is 75°. In the figure below, the dotted line is what k should be and ℓ is the solid line.

4. Let n be a positive integer. Show you can find a length of \sqrt{n} using only straightedge and compass.
5. Given a regular n-gon and a regular m-gon satisfying that n and m are relatively prime, show that you can create a regular nm -gon using only straightedge and compass.

Origami Paper (inspired) Problems

6. In the book it's proved that a constructible number α with straightedge in compass must satisfy that $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{n}$ for some nonnegative integer n. Using that proof and the origami paper's claim that roots of an arbitrary cubic equation $x^{3}+a x+b$ are origami-constructible, to show that if α is origami-constructible, then $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{k} 3^{m}$ for some nonnegative integers k, m.
7. Show that regular 9 -gons and regular 20-gons can be constructed with origami folds.
8. Suppose that p is prime. For a regular p-gon to be Euclidean constructible, then the roots of $x^{p}-1$ must be constructible. The roots of $x^{p-1}+x^{p-2}+\cdots+x+1$ together with $x=1$ form a regular p-gon. They would need to be constructible. Since $x^{p-1}+\cdots+x+1$ is irreducible, that means the degree of a root of this is $p-1$. Using this prove that $p=2^{2^{n}}+1$ for some nonnegative integer n.
9. Suppose that p is prime and that we want to analyze when the regular p-gon can be constructed using origami. Find all $p \leq 100$ for which the regular p-gon can be constructed with origami.

Bonus

10. Given two points A and B, one can find using only compass (without the straightedge) a point C such that $\triangle A B C$ is equilateral. One can also find points to make an hexagon using only compass. Prove or disprove that you can find, using only a compass, points C and D such that $A B C D$ is a square.
11. Given a circle of area A, show that you can construct with compass alone, a circle of area $n A$ for any positive integer n.
