Homework 7

Most exercises are from the Judson textbook.

- 1. Compute each of the following Galois groups. Which of these field extensions are normal field extensions? If the extension is not normal, find a normal extension of \mathbb{Q} in which the extension field is contained.
 - (a) $G(\mathbb{Q}(\sqrt{30})/\mathbb{Q})$
 - (b) $G(\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q})$
 - (c) $G(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q})$
- 2. Determine the Galois groups of each of the following polynomials in $\mathbb{Q}[x]$; hence, determine the solvability by radicals of each of the polynomials.
 - (a) $x^5 12x^2 + 2$ (b) $x^5 - 4x^4 + 2x + 2$
- 3. Determine the Galois groups of each of the following polynomials in $\mathbb{Q}[x]$; hence, determine the solvability by radicals of each of the polynomials.
 - (a) $x^3 5$ (b) $x^4 - x^2 - 6$
- 4. Determine the Galois groups of each of the following polynomials in $\mathbb{Q}[x]$; hence, determine the solvability by radicals of each of the polynomials.
 - (a) $x^5 + 1$ (b) $(x^2 - 2)(x^2 + 2)$ (c) $x^8 - 1$
- 5. Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to \mathbb{Z}_2 .
- 6. Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S_3 or \mathbb{Z}_3 .
- 7. Let G be the Galois group of a polynomial of degree n. Prove that |G| divides n!.
- 8. Construct a polynomial f(x) in $\mathbb{Q}[x]$ of degree 7 that is not solvable by radicals.
- 9. Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. If a is a positive real number, show that $\sigma(a) > 0$.
- 10. Determine all of the subfields of $\mathbb{Q}(\sqrt[4]{3}, i)$.