
Homework 7 Solutions

Enrique Treviño

Most exercises are from the Judson textbook.

1. Compute each of the following Galois groups. Which of these field extensions are normal field exten-
sions? If the extension is not normal, find a normal extension of Q in which the extension field is
contained.

(a) G(Q(
√

30 )/Q)

(b) G(Q( 4
√

5 )/Q)

(c) G(Q(
√

2,
√

3,
√

5 )/Q)

Solution 1.

(a) It is a normal extension, since it’s the splitting field of x2−30. Because the degree is 2, the Galois
group is isomorphic to Z2.

(b) The Galois group is It is not a normal extension, because the polynomial x4 − 5 has a couple of
roots in Q( 4

√
5), but not all of them. Namely, it doesn’t include, 4

√
5i. A normal extension that

contains this field extension is Q( 4
√

5, i).

(c) The Galois group is isomorphic to Z2×Z2×Z2 because you can send
√

2 to
√

2 or −
√

2. Similarly
for the

√
3,
√

5. You can think of (a, b, c) ∈ Z2 × Z2 × Z2 as representing
√

2 → (−1)a
√

2,√
3→ (−1)b

√
3,
√

5→ (−1)c
√

5. It is a normal extension.

2. Determine the Galois groups of each of the following polynomials in Q[x]; hence, determine the solv-
ability by radicals of each of the polynomials.

(a) x5 − 12x2 + 2

(b) x5 − 4x4 + 2x+ 2

Solution 2.

(a) It is irreducible by Eisenstein with p = 2. Therefore, the Galois group G satisfies 5||G| and that
the roots are all irrational. We also know G ≤ S5. Now, the roots of the derivative are 0 and
3
√

24/5, therefore there are at most 3 real roots. Using the intermediate value theorem we can
confirm there are roots in the following intervals: (-1,0), (0,1), (2,3). None of those contain 0 or
3
√

24/5, therefore the polynomial is separable. We also know it has exactly 3 roots, therefore it
has 2 complex roots. Therefore conjugation is a valid automorphism of order 2. Since we have an
element of order 5 (Cauchy’s theorem) and an element of order 2, by a Lemma proved in class,
G ∼= S5. Not solvable by radicals.

(b) Irreducible by Eisenstein with p = 2, so 5||G| and all roots are irrational. Let f(x) = x5 −
4x4 + 2x + 2. f ′(x) = 5x4 − 16x3 + 2, f ′′(x) = 20x3 − 48x2. The second derivative has roots
at 0 (multiplicity 2) and at 12/5. One can hence verify f ′′(x) ≤ 0 for x < 12/5 and f ′′(x) > 0
for x > 12/5. Therefore, f ′(x) is decreasing on x < 12/5 and increasing afterwards. That
means f ′(x) has at most two real roots. This means f(x) has at most 3 real roots. Note that
f(−1) < 0, f(0) > 0, f(1) > 0, f(2) < 0, f(3.5) < 0, f(4) > 0. Therefore, there are real roots
of f on the intervals (−1, 0), (1, 2), (3.5, 4). Therefore, it has exactly 3 real roots. We also know
they don’t math the roots of f ′(x) because the roots of f ′(x) are in (0, 1) ∪ (2, 3.5). By the same
reasoning as above, the Galois group is therefore S5. Not solvable by radicals.
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3. Determine the Galois groups of each of the following polynomials in Q[x]; hence, determine the solv-
ability by radicals of each of the polynomials.

(a) x3 − 5

(b) x4 − x2 − 6

Solution 3.

(a) The roots are 3
√

5, 3
√

5ω, 3
√

5ω2, where ω = e2πi/3. Since 3
√

5 is not rational, then the cubic is
irreducible, therefore |G| is a multiple of 3. It can be S3 or Z3. But it has two complex roots, so
it has a transposition, therefore G ∼= S3. It is solvable by radicals.

(b) We can solve y2 − y − 6 = 0, which yields

y =
1±
√

25

2
= 3,−2.

Therefore, the roots are
√

3,−
√

3,
√

2i,−
√

2i. Note that φ(
√

3) ∈ {
√

3,−
√

3} since 3 = φ(3) =
φ(
√

3)2. Similarly for
√

2i. Therefore the Galois group is isomorphic to Z2 × Z2.

4. Determine the Galois groups of each of the following polynomials in Q[x]; hence, determine the solv-
ability by radicals of each of the polynomials.

(a) x5 + 1

(b) (x2 − 2)(x2 + 2)

(c) x8 − 1

Solution 4.

(a)

(b)

(c)

5. Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to Z2.

Solution 5. Since the polynomial is irreducible, the roots live outside of F . Since it’s quadratic, there
are exactly two roots and they are conjugate of each other. Therefore, the field extension is of degree
2, so the Galois group has 2 elements, so it’s isomorphic to Z2.

6. Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S3 or Z3.

Solution 6. Let G be the Galois group. Since the polynomial is cubic and irreducible, the field
extension has degree n with 1 < n ≤ 6. Since the degree must divide 6, then the degree is 2, 3 or 6.
If it has degree 3, then G is isomorphic to Z3. If it has degree 6, then G could be S3 or Z6 (the only
two groups of order 6). To be Z6, G would need to have an element of order 6, but it cannot have
elements of order greater than 3. Therefore, it must be S3. Finally, we need to show n 6= 2. For n = 2,
we would need the degree of the field extension to be 2. This means, one of the roots is a root of a
quadratic, but then the cubic would not be irreducible. Contradiction!

Alternatively, one can say that G ≤ S3. The subgroups of S3 are Z3,Z2, and {1}. Since the polynomial
is irreducible, it cannot be {1}. Since the polynomial is cubic, it cannot be divisible by a quadratic, so
G 6= Z2.

7. Let G be the Galois group of a polynomial of degree n. Prove that |G| divides n!.

Solution 7. This is because G can be associated with a subgroup of Sn. Therefore |G||n!.

8. Construct a polynomial f(x) in Q[x] of degree 7 that is not solvable by
radicals.
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Solution 8.

9. Let σ ∈ Aut(R). If a is a positive real number, show that σ(a) > 0.

Solution 9. Let a > 0. Since a > 0, then
√
a ∈ R. But then

σ(a) = σ(
√
a ·
√
a) =

(
σ(
√
a)
)2
.

Therefore σ(a) ≥ 0. Suppose σ(a) = 0, then σ(2a) = 0, but that means σ is not 1-1. Therefore
σ(a) 6= 0. We can conclude σ(a) > 0.

10. Determine all of the subfields of Q( 4
√

3, i).

Solution 10. Following the example in the book, we see the subfields must be

Q(
4
√

3, i),Q(
4
√

3),Q(
4
√

3i),Q(
√

3, i),Q((1 + i)
4
√

3),Q((1− i) 4
√

3),Q(
√

3),Q(i),Q(
√

3i),Q.
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