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If each diagonal of a convex hexagon cuts off a triangle not less than one sixth of its
area, then all diagonals pass through one point, are divided by this point in the same
ratio, and are parallel to the sides of the hexagon.

Among n + 1 integers from 1,2, ..., 2n} there are two which are coprime.

From ten distinct two-digit numbers, one can always choose two disjoint nonempty
subsets, so that their elements have the same sum (IMO 1972).

Let k be a positive integer and n = ak=1 Prove that, from (2n — 1) positive integers,
one can select n integers, such that their sum is divisible by n.

Letay, -+, @, (n = 5) be any sequence of positive integers. Prove that it is always
possible to select a subsequence and add or subtract its elements such that the sum
is a multiple of n”.

In a room with (m — 1)n + 1 persons, there are m mutual strangers (in the room) or
there is a person who is acquainted with n persons.

Does the theorem remain valid, if one person leaves the room?

Of k positive integers withay <ay < ... <@ =n and k > [(n + 1)/2], there is
at least one pair a;, ar such that @; + a; = a,.

Among (ab + 1) mice, there is either a sequence of {(a + 1) mice of which one is
descended from the preceding, or there are (b + 1) mice of which none descends
from the other.

Leta, b, c, d be integers. Show that the product of the differences b —a,c—a,d—a,
¢ — b, d — b, d — c is divisible by 12.

One of the positive realsa, 2a, ..., (n—1)a has atmost distance 1/n from a positive
integer.

Two of six points placed intoa 3 x 4 rectangle will have distance = 3.
In any convex 2n-gon, there is a diagonal not parallel to any side.

From 52 positive integers, we can select two such that their sum or difference is
divisible by 100. s the assertion also valid for 51 positive integers?

Each of ten segments is longer than 1 cm but shorter than 55 cm. Prove that you can
select three sides of a triangle among the segments.

. The vertices of a regular 7-gon are colored white or black. Prove that there are vertices

of the same color, which form an isosceles triangle. What about a regular 8-gon? For
what regular n-gons is the assertion valid?

. Each of nine lines partitions a square into two quadrilaterals of areas in the ratio 2:3.

Then at least three of the nine lines pass through one point.

. Among nine persons, there are three who know each other or four persons who do

ot know each other. The number nine cannot be replaced by a smaller one.

R(4, 4) = 18 yields the problem: Among 18 persons, there are four who know each
other or four persons who do not know each other. For 17 persons this need not be

e,

R(3, 6) = 18 gives the problem: Among 18 persons, there are three who know each

other, or six who do not know each other. Try to get an estimate of R(6, 3) from

ow and above.




