
a) 2
b) 4
c) $5,\{1,6,8,9,4\}$
d) $(1,5,2,3,8,9,10,7,1)$
e) 2
f) 3
g) $(4,7,1,5,2,6)$

$$
-
$$

(4) For a division to have 5 games within the division for all 7 tears, you'd need $\frac{5 \times 7}{2}$ games. But $\frac{35}{2}$ is not an integer. Therefore, it's impossitl.
alternative solution
dun terms of graph theory, the
inducedsubyragh on one of the pools has 7 vertices and every vertex has degree 5.
But then $\sum \operatorname{deg}(v)=35$ is old. 13
(5) a) Yes.
b) No. icj is not an eclye.
c) The induced subgraph is

I re induced sungrapn is

$d h$ is missing from E_{3}, so $\left(V_{3}, E_{3}\right)$ is not an induced subgrach.
d)

e)

$f)$
 exist.

$g)$

You can choose any 10 edges of the original as long as you use all vertices.)
(7) G_{3} is not is a morphine to G_{2} as G_{3} contains K_{3} but G_{2} does not.
G_{4} is not isomorphic to anything as it has a vertex of degree $1\left(x_{2}\right)$ and no other graph does.

$$
\begin{aligned}
& \left.G_{1} \cong G_{3} \text { (so } G_{1} \not \approx G_{2}\right) \\
& w_{1} \rightarrow v_{1} \quad w_{2} \mapsto v_{5} \quad w_{3} \longmapsto v_{6} \\
& w_{4} \mapsto v_{3} \quad w_{5} \mapsto v_{2} \quad w_{6 \mapsto} \rightarrow v_{4} \\
& w_{1} w_{2} \leftrightarrow v_{1} v_{5} v \quad w_{5} w_{6} \longleftrightarrow v_{2} v_{4} \\
& w_{2} w_{3} \leftrightarrow v_{5} v_{6} \checkmark \quad w_{3} w_{5} \leftrightarrow v_{6} v_{2} V \\
& w_{3} w_{4} \leftrightarrow v_{6} v_{3} \checkmark \\
& w_{4} w_{5} \leftrightarrow v_{3} v_{2}
\end{aligned}
$$

(8)
(1)

$$
\begin{array}{r}
(1,4,8,3,2,7,12 \\
2,9,3,5,6,1)
\end{array}
$$

4 has not visited two edges

$$
(1,4,9,10,2,11,21,8,3,2,7,12,2,9,3,5,6,1)
$$

It is Enterien
(9) Every verter has even degree, so it's Enderiom.

$$
\frac{(a, b, l, a)}{(a, l, f, c, i, d, j, c, m, n, g, m, h, d, l},
$$

(10) vertex 5 and vertex 12 hare odd degree, so it's not Euberian.
By adding the ellie $5 \leftrightarrow 12$, every vertex has even degree, sort's Enterian.
(II) Suppose there is an Euberian trail in graph G. Then there is a path convecting any 2 vertios since $\left(x_{0}, x_{1}, \ldots, x_{1}\right)$ contains all reties of 0 .

So the two vertices are x_{i}, x_{j} for some $i<j$. Then they are $3^{a t h} c o n r e c t a l ~ x_{i} x_{i+1}, x_{i+1} x_{i+2}, \ldots, x_{j, 1} x_{j}$.
Therefore G is connected
Let $v \in V$ be such that $v \neq x_{0}, v \neq X_{t}$.
Then $v=x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ for some

$$
1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq t-1 \quad(w i t h k \text { possibly } 1)
$$

Note $x_{i_{1}}, x_{i+1}$ is an edge so $i_{1}+1 \neq i_{2}$.
similarly $i_{m+1} \neq i_{m+1}$.
Now the edges that include r are

$$
x_{i_{1}-1} x_{i_{1}}, x_{i_{1}} x_{i_{1-1}}, x_{i_{2-1}} x_{i_{2}}, x_{i_{2}} x_{i_{2}+1}, \ldots, x_{i_{k-1}} x_{i_{k}}, x_{i_{n}} x_{i_{k-1}}
$$

so there are $2 k$ edges. So the degree of any vertex v besides x_{0}, x_{t} is even. Therefore it has at most 2 vertices of add degree $\left(x_{0}, x_{+}\right)$.

Now suppose G is conrectal and has at most

2 vertices of odd degree. If it has 0 vertices of odd degree, then by the theorem proved in class, there is an Eubeian circuit (andherce a trail). di it had 1 odd degree vertex

$$
\sum_{v \in G} \operatorname{deg}(v) \text { is ord, but that }
$$

is impossible since $\sum_{v \in G} \operatorname{deg}(v)=2 \mid c=1$ is even.
Therefore, we may assume there are exactly 2 vertices of old degree. Let's call them v, w. Let's consider the following cases
Core 1 : vow is not an edge.
Then if me add that edge, we can form an Euleviens circuit $\left(v, x_{1}, x_{2}, \ldots, x_{t-1}, x_{t, v}\right)$ in
this graph because every vertex has even degree.
Since it is a circuit we can force wy to be at the end,
i.e. $\left(v, y_{1}, y_{2}, \ldots, y_{s}, w, v\right)$ (apter reordering).

But then $\left(v, y_{1}, \ldots, y s, w\right)$ is an Euterian trail in G.

Case 2: $v w$ is an edge in G. Let σ^{\prime} be the graph with v w removed. of G^{\prime} is disconnected consider the convected component A containing v and the connestal component B containing w. Euch subgragh has all vertices of even degree, so they have Euberian circuits

$$
\left(v, x_{1}, x_{2}, \ldots, x_{t}\right) \text { with } v=x_{f}
$$ and $\left(w, y_{1}, y_{2}, \ldots, y_{5}\right)$ with $w=y s$.

Then in the original graph $\left(v, x_{1}, \ldots, x_{t}, w, y_{1}, y_{2}, \ldots, y_{s}\right)$ is an Enterian trail.
M G^{\prime} is not disconnectal, then all vertices Lave even degree, so there is an Euberian circuit $\left(v, x_{1}, x_{2}, \ldots, x_{t}\right)$ with $x_{t}=v$. Then $\left(v, x_{1}, x_{2}, \ldots, x_{t}, w\right)$ is an Eutherian trial in G.
(12) There are thamiltionion graphs with 17 vertios and 129 edges, for erapanple add 112 edges to C_{17}.

Since $\binom{1}{2}-17=119$, you can find 112 edges to add.

$$
\left|K_{17}\right|=\binom{17}{2}=\frac{17 \cdot 16}{2}=17 \cdot 8=136 .
$$

So 129 edges is 7 less than 136. Therefor, every vertex has degree $\geq 16-7=9=\left\lceil\frac{17}{2}\right\rceil$. Therefore the grays has to be hamiltonian Bob is right

