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Abstract

We translate the sum 1k+2k+ . . .+nk into a combinatorial problem. We then prove a classic formula
using this technique.

Many papers regarding finding formulas for Sk = 1k + 2k + 3k + . . .+nk have been published
in MAA journals. We have geometric approaches to the problem (see [2] and [4]), we have
algebraic approaches that use the binomial formula on (n + 1)k − nk and telescope (see [6]
and [10]), we have combinatorial attacks that count lattice points in different ways (see [5]
and [7]) and we have attacks using linear algebra (see [9]). The classical way to attack the
problem is using the telescoping technique together with generating functions (see page 160
in [8]).

Our goal is to explain an approach that we consider more direct and easier to remember.
In this paper we will prove the following classic formula that uses Stirling numbers of the
second kind1:

Theorem 1.

Sk = 1k + 2k + . . . + nk =
k∑

j=1

j!

{
k

j

}(
n + 1

j + 1

)
, (1)

where
{
n
k

}
, denoting Stirling numbers of the second kind, is the number of ways of partitioning

a set of n labelled objects into k nonempty unlabelled subsets.

We will first show the easy case of the sum of the first n positive integers. Start by
transforming the sum into a double sum as follows:

n∑
i=1

i =
∑
i≤n

∑
j≤i

1 =
∑
j≤i≤n

1.

Therefore 1 + 2 + . . . + n is the number of pairs (j, i) satisfying that 1 ≤ j ≤ i ≤ n. We
translated the sum into a combinatorial problem. We can consider all pairs j < i ≤ n and
all pairs j = i ≤ n. Therefore

1 + 2 + . . . + n =

(
n

2

)
+

(
n

1

)
=

(
n + 1

2

)
=

n(n + 1)

2
.

This proof of the sum of 1 + 2 + . . . + n can be easily generalized. To make the process
clearer for generalization let’s consider the sum of the first n squares:∑

c≤n

c2 =
∑
c≤n

∑
a≤c

∑
b≤c

1 =
∑

1≤a,b≤c≤n

1.

1Another important formula regarding Sk is Faulhaber’s formula (see [1] and [3]).
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That is, we want to find the number of triples (a, b, c) satisfying that 1 ≤ a ≤ c and 1 ≤ b ≤ c.
We can split this into the following cases: (a < b < c), (a < b = c), (a = b < c), (a = b = c).
By symmetry of a and b we can just multiply the cases of the form (a < b) by 2. Then, we
have

n∑
c=1

c2 = 2

(
n

3

)
+ 2

(
n

2

)
+

(
n

2

)
+

(
n

1

)
= 2

(
n

3

)
+ 3

(
n

2

)
+

(
n

1

)
=

n

6
(2(n− 1)(n− 2) + 9(n− 1) + 6) =

n(n + 1)(2n + 1)

6
.

In general, the technique breaks down the sum of the first n k-powers into a sum of k + 1
terms as follows:

Lemma 1.

Sk =
n∑

i=1

ik =
k+1∑
j=1

cj

(
n

j

)
, (2)

where cj = j!
{
k
j

}
+ (j − 1)!

{
k

j−1

}
.

Proof. Using the same idea as the examples for k = 1, 2, we start by translating the sum of
powers into a (k + 1)-fold sum:

n∑
i=1

ik =
∑
i≤n

∑
a1≤i

∑
a2≤i

∑
a3≤i

· · ·
∑
ak≤i

1 =
∑

1≤a1,a2,...,ak≤i≤n

1.

Therefore, we translated the problem to the combinatorial problem of counting how many
k + 1 tuples (a1, a2, . . . , ak, i) exist with the constraints 1 ≤ am ≤ i ≤ n for all 1 ≤ m ≤ k.

Let j ∈ {1, 2, . . . , n}. Consider a subset S of {1, 2, . . . , n} with j elements. We want to
count the number of tuples (a1, a2, . . . , ak, i) satisfying 1 ≤ am ≤ i ≤ n and that the values
taken by the elements in the tuple are exactly those in S. Since i ≥ am for all m, then i is
forced to be the maximum among the elements of S. Now we have two cases: am < i for all
m or there exists an m such that am = i.

• If am < i for all m, then we have j − 1 possible values from S distributed among
a1, a2, . . . ak. There are

{
k

j−1

}
of partitioning the a1, a2, . . . ak into j−1 “blocks”2. Then

there are (j − 1)! ways of assigning values to those “blocks” from the values left in S.
Therefore we have (j − 1)!

{
k

j−1

}
ways of matching the tuples to the values of S.

• If there is an m such that am = i, then we have j possible values from S distributed
among the a1, a2, . . . ak. Therefore, we have j!

{
k
j

}
ways of matching the tuples to the

values of S.

Since there are
(
n
j

)
possible subsets S, then the total number of tuples is (2), and the proof

is complete.

Now, we can easily prove the main theorem:

2To clarify what we mean by “blocks”, let’s look at the following example: in the k = 3 case when j = 3, we want 2 “blocks”,
there are 3 ways to do this, namely {{a1, a2}, {a3}}, {{a1, a3}, {a2}}, and {{a2, a3}, {a1}}.
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Proof of Theorem 1. From Lemma 1 we get

n∑
i=1

ik =
k+1∑
j=1

(
j!

{
k

j

}
+ (j − 1)!

{
k

j − 1

})(
n

j

)

=
k+1∑
j=1

j!

{
k

j

}(
n

j

)
+

k+1∑
j=1

(j − 1)!

{
k

j − 1

}(
n

j

)
.

In the left sum the j = k+1 is zero because
{

k
k+1

}
= 0, and we can make a change of variable

in the right sum to get

n∑
i=1

ik =
k∑

j=1

j!

{
k

j

}(
n

j

)
+

k∑
j=1

j!

{
k

j

}(
n

j + 1

)

=
k∑

j=1

j!

{
k

j

}(
n + 1

j + 1

)
.

For the last step we used Pascal’s formula for binomial coefficients.
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