Practice Exam 1
1. Let f: A— B and g: B — C be maps.

(a) If f and g are both one-to-one functions, show that g o f is one-to-one.

Proof.

(a) Suppose go f(z) = go f(y), i-e., g(f(x)) = g(f(y)). Since g is one-to-one, then
f(x) = f(y). Since f is one-to-one, then x = y. Therefore g o f is one-to-one.

(b) Let ¢ € C. Since g o f is onto, there exists an a € A such that go f(a) = c¢. Let
b= f(a) € B. Then g(b) = g(f(a)) = c. So g(b) = c. Therefore g is onto.

(c) Suppose f(z) = f(y), then g(f(x)) = g(f(y)). Since g o f is one-to-one and
go f(x) =go f(y), then z = y. Therefore f is one-to-one.
An alternative proof would be to assume for the sake of contradiction that f is
not one-to-one, i.e., there exist distinct z and y such that f(x) = f(y). But then
9(f(z)) = g(f(y), which implies that x = y, contradicting the fact that x and y are
distinct.
The two proofs are very similar but I wrote both of them to illustrate that you
don’t have to think about it a certain way.

(d) Let z,y € B and suppose g(z) = g(y). Since z € B and y € B and f is onto, there
exist aj, as € A such that f(a;) = x and f(ay) = y. Therefore g(f(a1)) = g(f(a2)),
so go f(a;) = go f(ay). Since g o f is one-to-one, then a; = ay. But then
f(a1) = f(az), so x = y. Therefore g is one-to-one.

(e) Let b € B. Now consider ¢ = g(b) € C. Since g o f is onto, then there exists an
a € A such that g o f(a) = ¢. Therefore g(f(a)) = ¢ = g(b). Since g is one-to-one,
f(a) = b. So we've shown that there exists an a € A such that f(a) = b, which
shows that f is onto.

O

2. Determine whether or not the following relations are equivalence relations on the given
set. If the relation is an equivalence relation, describe the partition given by it. If the
relation is not an equivalence relation, state why it fails to be one.

(a) z~yinRifz >y

(b) m ~nin Z if mn >0

(c)z~yinRif |z —y| <4
)

(d) m~mninZif m=n (mod 6)

Proof.



(a) It’s not an equivalence relation because it is not symmetric. For example 3 ~ 2
because 3 > 2, but 2 +¢ 3 since 2 # 3.

(b) It’s not an equivalence relation because it is not reflexive since 0 ¢ 0.

(c) It’s not an equivalence relation because it is not transitive. Indeed, 4 ~ 0 since
|4—0] <4 and 0 ~ —4 since |0—(—4)| < 4. Yet 4 o¢ —4 because |[4—(—4)] =8 > 4.

(d) It is an equivalence relation. The equivalence relation partitions the set Z into the
following six equivalence classes:

[0] is the set of multiples of 6.
1] is the set of numbers of the form 6k 4 1 for some integer k.
2| is the set of numbers of the form 6k + 2 for some integer k.

(]
o
o |
o
e [4] is the set of numbers of the form 6k + 4 for some integer k.
L]

[

]
]

3] is the set of numbers of the form 6k + 3 for some integer k.
]

5] is the set of numbers of the form 6k + 5 for some integer k.

O

3. For each of the following pairs of numbers a and b, calculate ged(a, b) and find integers
r and s such that ged(a,b) = ra + sb.

(a) 14 and 39
(b) 234 and 165

Proof.
(a)

39=14x2+11

14=11x14+3
11=3x3+2
3=2x1+1.
Therefore the ged is 1. Now,
1=3-2x1
=3-(11-3x3)x1
=3x4-11x1
=(14—-11)x4—-11x1
=14 x4—-11 x5

=14x4—-(39—-14x2)x5
=14 x 14 — 39 x 5.

Therefore if r = 14 and s = —5 we have 14a + 390 = 1.



265 = 165 x 1 + 69
165 = 69 x 2 4 27
69 =27x2+15
27=15x1+12
15=12x1+3
12=3x4+40.
Therefore the ged is 3.
Now,
3=156—-12x1
=15—-(271—-15x1)x1
=15x2-27x1
=(69—27Tx2)x2—-27x1
=69 x2—-27x5
=69 x 2 — (165 —69 x 2) x5
=69 x 12 -165 x 5
= (234 —165x 1) x 12—165 x 5
=234 x 12 — 165 x 17.

Therefore if r = 12 and s = —17 we have 234r 4+ 165s = 3.
O

4. Which of the following associative multiplication tables defined on the set G = {a, b, ¢, d}
form a group? Support your answer in each case.

(a)

ola b ¢ d
ala ¢ d a
blb b ¢ d
cle d a b
dld a b ¢
(b)
ola b ¢ d
ala b ¢ d
b|b a d c
cle d a b
dld ¢ b a
(c)
ola b ¢ d
ala b ¢ d
b|b ¢ d a
cle d a b
dld a b ¢




o‘a b ¢ d
ala b ¢ d
blb a ¢ d
cle b a d
dld d b ¢

Proof. (a) It’s not a group since it doesn’t have an identity. The easy way to see that
it does not have an identity is that no row of the Cayley table matches the top row.

(b) The identity is a. All elements have inverses (the inverse of a is a, the inverse of
b is b, the inverse of ¢ is ¢ and the inverse of d is d). The operation is closed by
definition. Since the operation is also associative by assumption, {a,b,c,d} is a
group.

(c¢) The identity is a. All elements have inverses (the inverse of a is a, the inverse of
b is b, the inverse of ¢ is ¢ and the inverse of d is d). The operation is closed by
definition. Since the operation is associative by assumption, it is a group!

(d) The identity is a. However, d does not have an inverse, so it is not a group.
O

. Let S =R\ {—1} and define a binary operation on S by a *b = a + b+ ab. Prove that
(S, %) is an abelian group.

Proof. First let’s show that x is closed, i.e., that if a,b € S, then a xb € S. Since S is
every real except —1 then we want to show that if @ # —1 and b # —1, then axb # —1.
For the sake of contradiction, suppose a x b = —1. Then

a+b+ab=-1
alb+1)+b= -1
alb+1)=—(0b+1).
Since b # —1, then we can divide both sides by b 4+ 1. But then we have that a = —1,

which contradicts that a # —1. Therefore a *b # —1, so axb € S, so * is a binary
operation on S.

Now let’s show that * is associative. Suppose a,b,c € S.

(axb)xc=(ab+a+b)*xc=(ab+a+b)(c)+ (ab+a+b)+c
=abc+ac+bc+ab+a+b+c
=albc+c+b)+a+ (bc+b+c)
=a(bxc)+a+ (bxc)
=ax(bxc).

Therefore * is associative.

Let’s show that 0 is the identity for S. Let a € S. Thenax0 =a+ 0+ 0 = a and
Oxa=04+04a=a. Therefore 0 xa =a*0 = a, so 0 is the identity of S.



To finish our proof that S is a group, we need to show every element has an inverse.
Let a € S. We want to find an inverse for a, so we want to find a b # —1 such that
axb=0.

axb=0
ab+a+b=0
bla+1)=—a
a
T a+1
Since a # —1, b exists and axb = 0, so b = — ® s the inverse of a. Note that

1
=—1+—-#-1 :
b +a—|—17é ,sobe S

We've shown that S is a group together with the operation x. To show that it is an
abelian group we must prove that % is commutative. Let a,b € S. Then

axb=ab+a+b=ba+b+a=">bxa,
therefore it is an abelian group.

O

. Find all the subgroups of Z3 x Zs. Use this information to show that Zs x Z3 is not the
same group as Zg.

Proof. The subgroups of Zs x Zs are

(
(b) {(0,0),(1,0),(2,0)},
(c) {(0,0),(0,1),(0,2)},
(d) {(0,0),(1,1),(2,2)},
(e) {(0,0),(1,2),(2,1)},
(f) Zs x Z3

Meanwhile, the subgroups of Zg are:

(a) {0},
(b) {0,3,6},
(c) Zg.

Since there are a different number of subgroups in each group Zs x Z3 # Zg.

O

. Let n=0,1,2,... and nZ = {nk : k € Z}. Prove that nZ is a subgroup of Z. Show
that these subgroups are the only subgroups of Z.

Proof. First let’s show nZ is a subgroup for any n € NU {0}:



(a) First let’s show addition is closed on nZ. If a,b € nZ, then there exist ki, ko € Z
such that a = kyn and b = kon. Then

a—l—b:k:1n+k:2n:(k‘1+k2)n€nZ.

(b) The identity of Z, 0, is an element of nZ, since 0 =n x 0, so 0 € nZ.

(c) Finally, let’s show that any element of nZ has an inverse. Indeed if a € nZ, then
a = kin for some integer k;. Then —a = —kyn = (—ky)n € nZ. Therefore the
inverse of a is also an element of nZ.

By (a), (b) and (c), nZ is a subgroup of Z with the addition operation.

Now, we want to show that all subgroups of Z are of the form nZ with n € N U {0}.
Suppose H C Z is a subgroup. If H = {0}, then H = 0Z. Suppose H #}0}. By the
Well-Ordering principle, there exists a nonzero element n € H such that |n| is minimal.
Since H is a subgroup of Z, then the inverse of n is also in H, i.e., —n € H. Since
n and —n, then we can assume without loss of generality that n is positive. Since H
is a subgroup, then all multiples of n must be in H. This means that nZ C H. Now
suppose that there is an element m € H such that m ¢ nZ. By the division algorithm,
there exist integers ¢ and r such that:

m=qn-—+r,

where 0 < r < n. Since m ¢ nZ, then r # 0. Since m € H and qn € H, then —qn € H,
som —qn € H. Therefore r € H. But 0 < r < n which implies that |r| < |N|, which
contradicts the minimality of |n|. This means no element m exists. That proves that
H =nZ.

Alternative Solution: An alternative solution to prove that if H is a subgroup of Z,
then H = nZ is the following:

Since Z is cyclic, H is cyclic. Therefore H =< m > for some m € Z. Since —m is the
inverse of m, then < m >=< —m >=<|m| >. So if n = |m|, then H =< n > for some
nonnegative integer n. But < n >= {kn : k € Z}, so < n >= nZ, which is what we
wanted to prove.

O

. Prove or disprove each of the following statements.

(a) Zg is cyclic.

(b) All of the generators of Zg, are prime.

(c) Q is cyclic.

(d) If every proper subgroup of a group G is cyclic, then G is a cyclic group.
)

(e) A group with a finite number of subgroups is finite.

Proof.

(a) It is not cyclic because none of the cyclic subgroups is the whole group. Indeed the
cyclic subgroups are:



- <1>={1},

- <3>={1,3},
- <5 >={1,5},
- <7>={1,7}.

(b) It’s not true because < 49 >= Zg, and 49 is not prime. Also < 1 >= Zg and 1 is
not prime either.

(c) Suppose that Q is cyclic. Suppose that it has a as its generator. Since a € Q,
then there exist p and ¢ relatively prime integers such that a = g. Since a is a
generator, then any rational number x can be written in the form ka for some
integer k. Therefore © = kp/q. Therefore gz is an integer, for any rational number
x. The rational number r = q%l doesn’t satisfy that gqr € Z. This contradicts our

assumption that Q is cyclic, so it is not cyclic.

(d) False. The group of symmetries of the equilateral triangle (Dj3) is a non-cyclic group
with proper subgroups all cyclic.

(e) True. This one is hard to prove. Let G be a group with finitely many subgroups.
Then in particular, there are finitely many cyclic subgroups of the form < g >.
Now define the following equivalence relation on the set G: g ~ hif < g >=< h >.
The set of equivalence classes partitions GG. Since each equivalence class creates a

subgroup of G and G has finitely many subgroups, the set of equivalence classes is
finite.

For the sake of contradiction assume that G is infinite. Then, by the Pigeonhole
principle, at least one of the equivalence classes has infinitely many elements. Sup-
pose the equivalence class with infinitely many elements is [g]. Let g, h € [g] such
that g # h, and h # ¢g~'. Since < g >=< h >, then there exist k, j € Z such that
g = h¥ and h = ¢/. Therefore g = h* = (¢’)* = ¢g’*. Therefore ¢*~! = ¢ (the
identity). Now, note that since g and h are not the identity, inverses of each other
or equal to each other, then jk # 1, so jk — 1 # 0. So then | < g > | < |jk — 1].
But if r € [g], then r €< g > because < r >=< g > implies r €< g >. Since [g] is
infinite, < g > should have infinitely many elements, yet < g > has finitely many.
This contradicts our assumption that G is infinite, proving that G is finite.

O

9. Find the order of each of the following elements.
(a) o€ Z12
(b) V3 E€R
(c) V3 €R*
(d) —ieC*
Proof.
(a) ged(5,12) = 1, therefore | <5 > | = 12.
(b) [V3] = oo.
(c) <V3>=1{..,-3,-V3,1,v3,3,3V3,...}, so V3| = 0.



(d) < —i>={1,—i,—1,i},s0 | < —i > | =4.

10. Prove that Z, has no nontrivial proper subgroups if p is prime.

Proof. Z, =<1 >. Suppose H is a nontrivial subgroup of Z,. Since Z,, is cyclic, H must
be cyclic. Suppose H =< b >. But b = b-1. Therefore the order of b is m =P =np.

But then H is Z,. So the only subgroups of Z, are {0} and Z,.
0



