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Let’s integrate [ ze® dz.
The standard way is by integration by parts, using that v = = and dv = e?**dx. Then we get du = dz
2z
and v = %-. Therefore
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Let’s do it a different way using the series expansion of e*:
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Let’s look at the n-th term in the series:
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By multiplying and dividing by 4, and multiplying and dividing by (n + 1), we get
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But then, n+ 1= (n+2)—1, so
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Therefore, the n-th term in the series is
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So the integral of ze?* can be re-written as
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Note that both expressions in the parenthesis are almost the same as
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In fact, the first expression in the parenthesis is e?* — 1 and the second one is e2* — 1 — 2z, so we get
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Using that 1/4 is a constant and that the § terms cancel out, we conclude that

2x 2x
/xe%dx = xe2 _e + C.

4

|8




