
The least quadratic non-residue mod p
The primes that Euclid forgot

Dirichlet Characters

The least quadratic non-residue and related
problems

Enrique Treviño

Lake Forest College

Elmhurst College Colloquium
April 20, 2016

Enrique Treviño The least quadratic non-residue and related problems



The least quadratic non-residue mod p
The primes that Euclid forgot

Dirichlet Characters

Squares

Consider the sequence

2,5,8,11, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:
n ≡ 0, 1 or 2 (mod 3).
If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).
If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).
If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).
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Quadratic residues and non-residues

Let n be a positive integer. For q ∈ {0,1,2, . . . ,n− 1}, we call q
a quadratic residue modn if there exists an integer x such that
x2 ≡ q (mod n). Otherwise we call q a quadratic non-residue.

For n = 3, the quadratic residues are {0,1} and the
quadratic non-residue is 2.
For n = 5, the quadratic residues are {0,1,4} and the
quadratic non-residues are {2,3}.
For n = 7, the quadratic residues are {0,1,2,4} and the
quadratic non-residues are {3,5,6}.
For n = p, an odd prime, there are p+1

2 quadratic residues
and p−1

2 quadratic non-residues.
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Least quadratic non-residue

How big can the least quadratic non-residue be?
Let g(p) be the least quadratic non-residue modulo p.

p Least quadratic non-residue
3 2
5 2
7 3
11 2
13 2
17 3
19 2
23 5
29 2
31 3
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p Least quadratic non-residue
7 3
23 5
71 7

311 11
479 13

1559 17
5711 19
10559 23
18191 29
31391 31

422231 37
701399 41
366791 43

3818929 47
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Heuristics

Let g(p) be the least quadratic non-residue modp. Let pi be
the i-th prime, i.e, p1 = 2,p2 = 3, . . . .

#{p ≤ x |g(p) = 2} ≈ π(x)
2 .

#{p ≤ x |g(p) = 3} ≈ π(x)
4 .

#{p ≤ x |g(p) = pk} ≈ π(x)
2k .

If k = logπ(x)/ log 2 you would expect only one prime
satisfying g(p) = pk .
Choosing k ≈ C log x , since pk ∼ k log k we have
g(x) ≤ C log x log log x .
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Theorems on the least quadratic non-residue modp

Let g(p) be the least quadratic non-residue modp. Our
conjecture is

g(p) = O(log p log log p).

Under GRH, Bach showed g(p) ≤ 2 log2 p. Soundararajan,
Lamzouri and Li improved this to g(p) ≤ log2 p.

Unconditionally, Burgess showed g(p)�ε p
1

4
√

e
+ε.

1
4
√

e ≈ 0.151633.

In the lower bound direction, Graham and Ringrose proved
that there are infinitely many p satisfying
g(p)� log p log log log p, that is

g(p) = Ω(log p log log log p).
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Explicit estimates on the least quadratic non-residue
modp

Norton showed

g(p) ≤

 3.9p1/4 log p if p ≡ 1 (mod 4),

4.7p1/4 log p if p ≡ 3 (mod 4).

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic
non-residue modp. Then

g(p) ≤

 0.9p1/4 log p if p ≡ 1 (mod 4),

1.1p1/4 log p if p ≡ 3 (mod 4).
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Theorem (Burgess 1962)

Let g(p) be the least quadratic non-residue mod p. Let ε > 0.
There exists p0 such that for all primes p ≥ p0 we have
g(p) < p

1
4
√

e
+ε.

Theorem (ET)

Let g(p) be the least quadratic non-residue mod p. Let p be a
prime greater than 104732, then g(p) < p1/6.
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Consecutive quadratic residues or non-quadratic
residues

Let H(p) be the largest string of consecutive nonzero quadratic
residues or quadratic non-residues modulo p.
For example, with p = 7 we have that the nonzero quadratic
residues are {1,2,4} and the quadratic non-residues are
{3,5,6}. Therefore H(7) = 2.

p H(p)

11 3
13 4
17 3
19 4
23 4
29 4
31 4
37 4
41 5
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Burgess proved in 1963 that H(p) ≤ Cp1/4 log p.

Mathematician Year C Restriction
Norton* 1973 2.5 p > e15

Norton* 1973 4.1 None
Preobrazhenskaya 2009 1.85 . . .+ o(1) Not explicit

McGown 2012 7.06 p > 5 · 1018

McGown 2012 7 p > 5 · 1055

ET 2012 1.495. . . + o(1) Not explicit
ET 2012 1.55 p > 1013

ET 2012 3.64 None

*Norton didn’t provide a proof for his claim.
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There are infinitely many primes

Start with q1 = 2. Supposing that qj has been defined for
1 ≤ j ≤ k , continue the sequence by choosing a prime qk+1 for
which

qk+1 | 1 +
k∏

j=1

qj .

Then ‘at the end of the day’, the list q1,q2,q3, . . . is an infinite
sequence of distinct prime numbers.
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Tree of possibilities

2

3

7

43

13

53

5 248867

443

5 2080151

139

5

233 5387

50207

23 1607 340999
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Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin
suggested two possible unique sequences.

The first is to take q1 = 2, then define recursively qk to be
the smallest prime dividing 1 + q1q2 . . . qk−1.
i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139,
2801, 11, 17, 5471, 52662739, . . .
It is conjectured that the first Mullin sequence touches all
the primes eventually.
Not much is known of this sequence.
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Second Euclid-Mullin Sequence

The second Mullin sequence is to take q1 = 2, then define
recursively qk to be the largest prime dividing
1 + q1q2 . . . qk−1.
i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339,
4680225641471129, . . . .
Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19,
23, 29, 31, 37, 41, 47, and 53 are missing from the first
Euclid-Mullin sequence.
Booker in 2012 showed that infinitely many primes are
missing from the sequence.
One of the results used in Booker’s proof is the upper
bound on g(p).
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An elementary bound for g(p)

Let g(p) be the least quadratic non-residue mod p.

Theorem
g(p) ≤ √p + 1.

Proof.
Suppose g(p) = q with q >

√
p + 1. Let k be the ceiling of p/q.

Then p < kq < p + q, so kq ≡ a mod p for some 0 < a < q,
and therefore kq is a quadratic residue modulo p. Since
q >
√

p + 1, then p/q <
√

p, so k is at most the ceiling of√
p <
√

p + 1 < q. Therefore k is a quadratic residue modulo p.
But if k and kq are quadratic residues modulo p, then q is a
square modulo p. Contradiction!
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An elementary bound for H(p)

Sketch of a proof that H(p) < 2
√

p.

The largest string of quadratic non-residues is < 2
√

p.
Suppose {a + 1,a + 2, . . . ,a + H} are all quadratic
residues mod p.
For n a non-residue, na + n, . . . ,na + Hn are non-residues.
If Hn > p, then H(p) ≤ n − 1. Therefore
H(p) ≤ max {p/n,n − 1,2

√
p}.

If n ∈ (
√

p/2,2
√

p] we have H(p) < 2
√

p.
Let k be the largest integer such that k2g(p) ≤ √p/2.
(k + 1)2g(p) > 2

√
p ≥ 4k2g(p) implies (2k + 1) > 3k2

which is false for each k ≥ 1. Therefore there is a
non-residue in the interval (

√
p/2,2

√
p], yielding

H(p) < 2
√

p.
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The primes that Euclid forgot

Theorem
Let Q1,Q2, . . .Qr be the smallest r primes omitted from the
second Euclid-Mullin sequence, where r ≥ 0. Then there is
another omitted prime smaller than

242

(
r∏

i=1

Qi

)2

.

Using the deep results of Burgess, Booker showed that the
exponent can be replaced with any real number larger than

1
4
√

e − 1
= 0.178734 . . . , provided that 242 is also replaced by

a possibly larger constant.
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Proof Sketch

Let X = 242(
∏r

i=1 Qi)
2. Assume there is no prime missing from

[2,X ] besides Q1, . . . ,Qr . Let p be the prime in [2,X ] that is last
to appear in the sequence {qi}. Let n be such that qn = p.
Then 1 + q1 . . . qn−1 = Qe1

1 . . .Qer
r pe.

Let d be the smallest number satisfying the following
conditions:

(i) d ≡ 1 (mod 4),
(ii) d ≡ −1 (mod Q1 . . .Qr )

(iii)
(

d
p

)
=
(
−1
p

)
.

Using the Chinese Remainder Theorem and the bound on
H(p) yields that d ≤ X .
Given the conditions on d and using that d ≤ X shows that
d is both a quadratic residue and a non-residue mod
1 + q1q2 . . . qn−1. Contradiction!
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Legendre Symbol

Let
(

a
p

)
=


0 , if a ≡ 0 mod p,

1 , if a is a square mod p

−1 , if a is a quadratic non-residue mod p.(
a
p

)
has the following important properties:(
a
p

)
=
(

a+p
p

)
for all a.(

a
p

)(
b
p

)
=
(

ab
p

)
for all a,b.(

a
p

)
6= 0 if and only if gcd (a,p) = 1.
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Dirichlet Character

Let n be a positive integer.
χ : Z→ C is a Dirichlet character modn if the following three
conditions are satisfied:

χ(a + n) = χ(a) for all a ∈ Z.
χ(ab) = χ(a)χ(b) for all a,b ∈ Z.
χ(a) 6= 0 if and only if gcd (a,n) = 1.

The Legendre symbol is an example of a Dirichlet character.
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A simple but powerful idea

Let g(p) = m be the least quadratic non-residue modulo p.

Suppose χ(a) =

(
a
p

)
Then χ(n) = 1 for n = 1,2,3, ...,m − 1

and χ(m) = −1. Therefore

m∑
i=1

χ(i) = m − 2 < m,

and
k∑

i=1

χ(i) = k for all k < m.

Therefore bounding
n∑

i=1

χ(i) can give an upper bound for g(p).
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Pólya–Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

S(χ) = max
M,N

∣∣∣∣∣
M+N∑

n=M+1

χ(n)

∣∣∣∣∣
The Pólya–Vinogradov inequality (1918) states that there exists
an absolute universal constant c such that for any Dirichlet
character S(χ) ≤ c

√
q log q.

Under GRH, Montgomery and Vaughan showed that
S(χ)� √q log log q.

Paley showed in 1932 that there are infinitely many quadratic
characters such that S(χ)� √q log log q.
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Vinogradov’s Trick: Showing g(p)� p
1

2
√

e +ε

Suppose
∑
n≤x

χ(n) = o(x).

Let y = x1/
√

e+δ for some δ > 0. So
log log x − log log y = log (1/

√
e + δ) < 1/2

Suppose g(p) > y .∑
n≤x

χ(n) =
∑
n≤x

1− 2
∑

y<q≤x
χ(q)=−1

∑
n≤ x

q

1,

where the sum ranges over q prime. Therefore we have∑
n≤x

χ(n) ≥ bxc − 2
∑

y<q≤x

⌊
x
q

⌋
≥ x − 1− 2x

∑
y<q≤x

1
q
− 2

∑
y<q≤x

1.
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It took almost 50 years before the next breakthrough. It came
from the following theorem of Burgess:

Theorem (Burgess, 1962)
Let χ be a primitive character mod q, where q > 1, r is a
positive integer and ε > 0 is a real number. Then

|Sχ(M,N)| =

∣∣∣∣∣∣
∑

M<n≤M+N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

for r = 1,2,3 and for any r ≥ 1 if q is cubefree, the implied
constant depending only on ε and r .
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Consider ∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣ .
By Burgess ∣∣∣∣∣∣

∑
n≤N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

.

However, if χ(n) = 1 for all n ≤ N, then

N ≤

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

,

so
N

1
r � q

r+1
4r2 +ε

.

Hence
N � q

1
4+

1
4r +εr .
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Now we know why
g(p)� p

1
4
√

e
+ε
,

but how do we go from there to be able to figure out the
theorem:

Theorem (ET)

Let g(p) be the least quadratic non-residue mod p. Let p be a
prime greater than 104732, then g(p) < p1/6.
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Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)
Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be
non-negative integers with N ≥ 1 and let r ≥ 2, then

|Sχ(M,N)| ≤ 30 · N1− 1
r p

r+1
4r2 (log p)

1
r .

Theorem (ET)
Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M
and N be non-negative integers with N ≥ 1 and let r be a positive integer.
Then for p ≥ 107, we have

|Sχ(M,N)| ≤ 2.74N1− 1
r p

r+1
4r2 (log p)

1
r .
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non-negative integers with N ≥ 1 and let r ≥ 2, then

|Sχ(M,N)| ≤ 30 · N1− 1
r p

r+1
4r2 (log p)

1
r .

Theorem (ET)
Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M
and N be non-negative integers with N ≥ 1 and let r be a positive integer.
Then for p ≥ 107, we have

|Sχ(M,N)| ≤ 2.74N1− 1
r p

r+1
4r2 (log p)

1
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Some Applications of the Explicit Estimates

The explicit estimate on the least quadratic non-residue
showed earlier today.
Booker computed the class number of a 32-digit
discriminant using an explicit estimate of a character sum.
McGown proved that there is no norm-Euclidean cubic field
with discriminant > 10100.
Levin, Pomerance and Soundararajan proved a conjecture
of Brizolis that for every prime p > 3 there is a primitive
root g and an integer x ∈ [1,p − 1] with logg x = x , that is,
gx ≡ x (mod p).
I used similar explicit estimates of character sums to bound
the least inert prime in a real quadratic field.
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Thank you!
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