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The purpose of this write up is to write down an organized proof that the expected number
of random real numbers ∈ [0, 1] needed to get a sum greater than 1 is e. I was inspired to
try to prove this by reading about this result in the fun book “The Simpsons and their
mathematical secrets” by Simon Singh (the statement appears on p. 137).

To make the proof easier to read, I will prove a few independent results first.

Lemma 1. Let x ∈ [0, 1] and let k ∈ N. Then the probability that k random real numbers
taken uniformly from [0, 1] sum to a value ≤ x is

xk

k!
.

Proof. We’re trying to find the probability that x1 + x2 + . . . + xk ≤ x when xi is taken
uniformly from [0, 1]. The probability is the following:∫ x

0

∫ x−x1

0

∫ x−x1−x2

0

· · ·
∫ x−x1−x2−...−xk−1

0

1 dxkdxk−1 . . . dx1.

Let’s prove that this integral equals xk/k! by induction. First, it’s true for k = 1 since∫ x

0

1 dx1 = x =
x1

1!
.

Now let’s assume it’s true for k. Let’s prove that the statement is true for k + 1.∫ x

0

∫ x−x1

0

∫ x−x1−x2

0

· · ·
∫ x−x1−x2−...−xk−1−xk

0

1 dxk+1dxkdxk−1 . . . dx1 =

=

∫ x

0

(∫ x−x1

0

∫ x−x1−x2

0

· · ·
∫ x−x1−x2−...−xk−1−xk

0

1 dxk+1dxkdxk−1 . . . dx1

)
.

So by the induction hypothesis this yields∫ x

0

(x− x1)
k

k!
dx1 = −(x− x1)

k+1

(k + 1)!

∣∣∣x
0

=
xk+1

(k + 1)!
.

�

Theorem 1. Let k ∈ N. Let x1, x2, x3, . . . , xk be randomly chosen real numbers from the
interval [0, 1]. The probability that x1 + . . . + xk > 1 while x1 + . . . + xk−1 ≤ 1 is 0 if k = 1
and

1

k(k − 2)!
,

if k ≥ 2.
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Proof. It’s clearly true for k = 1, so let’s assume k ≥ 2. Since x1 + x2 + . . . + xk−1 ≤ 1, let
x1 + x2 + . . . + xk−1 = x. Then for the sum to surpass 1, xk > 1− x. The probability that
xk > 1− x is x. The probability that x1 + x2 + . . . + xk−1 = x is 0, so what we’re going to
do is pick a range, so let’s say x1 + x2 + . . . + xk−1 ∈ [x, x + ε] for some ε > 0.

The probability that x1 + x2 + . . . + xk−1 ∈ [x, x + ε] is

(x + ε)k−1

(k − 1)!
− xk−1

(k − 1)!
= ε

(k − 1)xk−2

(k − 1)!
+ O(ε2) = ε

xk−2

(k − 2)!
+ O(ε2).

Therefore the probability that x1 + x2 + . . . + xk > 1 while x1 + x2 + . . . + xk−1 ≤ 1 is∫ 1

0

xk−2

(k − 2)!
(x) dx =

1

(k − 2)!

∫ 1

0

xk−1 =
xk

k(k − 2)!

∣∣∣1
0

=
1

k(k − 2)!
.

�

Here’s a fun side corollary:

Corollary 1.
∞∑
k=2

1

k(k − 2)!
= 1.

Proof. Let x1, x2, x3, . . . be randomly chosen real numbers uniformly taken from the interval
[0, 1]. Let q be the smallest integer such that x1 + x2 + . . .+ xq > 1. Since xi ≤ 1, q ≥ 2. By
the previous theorem, the probability that q = k is

1

k(k − 2)!
,

since q can take any values from 2 to ∞ and the probabilities add up to 1, we have

∞∑
k=2

1

k(k − 2)!
= 1.

�

Now, the main corollary of the theorem:

Corollary 2. The expected number of random reals uniformly chosen from the interval [0, 1]
required for their sum to be greater than 1 is e.

Proof. Let X be the random variable described in the statement of the corollary. By Theorem
1, the probability that X = k is

1

k(k − 2)!
,

therefore

E(X) =
∞∑
k=1

k · P(X = k) =
∞∑
k=2

k

k(k − 2)!
=
∞∑
k=0

1

k!
= e.

�
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1 Without using Integrals

What if we want to prove this without using integrals. Here’s how one would translate the
problem: For a positive integer n, let x1, x2, . . . be randomly chosen integers chosen from the
set {0, 1, 2, . . . , n− 1}.

It’s not that hard to solve this problem with a nice combinatorial formula, but it is a bit
harder to recover e as we did above. We will first write down two different formulas that
calculate the probability that x1 + . . . + xk ≥ n while x1 + x2 + . . . + xk−1 < n. Note that

to recover e, we should show that as n→∞ these formulas go to
1

k(k − 2)!
.

For the proofs we’re going to need two classic combinatorial results, let me prove them
first as lemmas:

Lemma 2. Let k,m be nonnegative integers. The number of ways x1 + x2 + . . . + xk = m
for xi nonnegative integers is (

m + k − 1

k − 1

)
.

Proof. Consider m + k − 1 slots. On k − 1 of the slots put a “plus” symbol. The number
of empty slots before the first “plus” symbol is x1. The number of slots between the first
“plus” and the second “plus” is x2 and so on. Translating these “slots” into k numbers is a
bijection, so the number of ways for x1 + x2 + . . .+ xk = m is the number of ways of placing
those “plus” signs which is precisely (

m + k − 1

k − 1

)
.

�

Lemma 3 (Chinese Stockings Theorem/ Hockey Stick Theorem). 1

Let r be a nonnegative integer and n ≥ r be an integer, then

n−r∑
k=0

(
r + k

r

)
=

(
n + 1

r + 1

)
.

Proof. Let’s count the number of ways of choosing r + 1 integers from the set
{1, 2, 3, . . . , n, n + 1} in two different ways.

On the one hand, it is
(
n+1
r+1

)
. On the other hand let’s count by considering the biggest

element in out set. Clearly the biggest element is a number between r + 1 and n. Let’s call
this element i. If i is the biggest element, then we have

(
i−1
r

)
ways of choosing the other r

elements. Therefore we have that the number of ways of choosing r + 1 elements from the
set {1, 2, 3, . . . , n, n + 1} is(

n + 1

r + 1

)
=

n+1∑
i=r+1

(
i− 1

r

)
=

n−r∑
k=0

(
k

r

)
.

�
1The name of “Chinese Stockings Theorem” or “Hockey Stick Theorem” comes from the shape the summands have in

Pascal’s Triangle when one selects them.
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Now we’re ready to prove the main theorem:

Theorem 2. For a positive integer n, let x1, x2, . . . be randomly chosen integers chosen from
the set {0, 1, 2, . . . , n−1}. The probability that x1+x2+. . .+xk ≥ n while x1+x2+. . .+xk−1 <
n is

n
(
n+k−2
k−1

)
−
(
n+k−1

k

)
nk

.

Proof. First let’s find the probability that x1 + x2 + . . . + xk ≥ n without restricting x1 +
x2 + . . .+xk−1 to be less than n. We’ll do this by finding the probability of the complement,
that is we’ll find the probability that the sum is less than n.

The number of ways to pick x1, x2, . . . xk is nk (since the choices are 0, 1, 2, . . . , n − 1).
The probability that the sum x1 +x2 + . . .+xk is m is

(
m+k−1
k−1

)
/nk (by Lemma 2). Therefore

the probability that the sum is less than n is:

n−1∑
m=0

(
m+k−1
k−1

)
nk

=

(
n+k−1

k

)
nk

.

To get the right hand side of the equation we used the Hockey Stick Theorem (Lemma 3).
Combining all of this we have that the probability that the sum is at least n is:

1−
(
n+k−1

k

)
nk

.

Now, to include the bit about x1 +x2 + . . .+xk−1 < n, we take away the times x1 + . . .+
xk−1 ≥ n from above, so we get that the probability we desire is:

1−
(
n+k−1

k

)
nk

−

(
1−

(
n+k−2
k−1

)
nk−1

)
=

n
(
n+k−2
k−1

)
−
(
n+k−1

k

)
nk

.

�

To finish we need to analyze what happens as n→∞ when k is fixed. First note that(
n+k−1

k

)
nk

=
(n + k − 1)(n + k − 2)(· · · )(n)

k!nk
→ 1

k!
.

Therefore
n
(
n+k−2
k−1

)
nk

→ 1

(k − 1)!
.

Hence
n
(
n+k−2
k−1

)
−
(
n+k−1

k

)
nk

→ 1

(k − 1)!
− 1

k!
=

1

k(k − 2)!
.

From this we can see that as n → ∞, the probability goes to
1

k(k − 2)!
, so Corollary 2

follows.
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