
Closest Pairs Problem  
 
 The next Divide-and-Conquer problem that we consider is an important one that 
comes from a family of problems in “computational geometry.”  The problem is very 
simple to state:   
 
 Given n distinct points in the plane, find the pair of points whose distance is a 
minimum. 
 
Applications: 
 

1.  Air traffic control software might want to quickly determine which two of n 
aircraft are closest so as to identify those planes that deserve highest priority. 
 

2.  Grades of lumber are characterized by smoothness and frequency of knotholes.  
A lumber store might want to eliminate a line of lumber.  It would make sense to 
determine which two lines are closest to being identical and eliminating one of 
these.  
 

Naïve algorithm:  Calculate all possible distances using the distance formula 
2

12
2

12 )()( yyxx −+− and then choose the minimum distance. 
 
 
Complexity of naïve algorithm: 
 First point—compute distance to n-1 other points 
 Second point—compute distance to n-2 other points 
 … 
 (n-1)st point—compute distance to 1 other point 
 

 This leads to a familiar sum:  
2

)1(1...21 nnn ⋅−
=−+++ which is )( 2nΘ  

 



Once again, the divide-and-conquer technique gives us a faster-than-quadratic solution to 
a problem that seems inherently quadratic.  The basic idea is fairly simple, but the 
“patching” together of solutions to the subproblems requires a fairly sophisticated 
analysis. 
 
The basic idea: 
 
Divide:  Find a vertical line that divides the set of points into two sets of size n/2, namely 
the points to the left of the line and those to the right.  Using recursion, find the smallest 
distance dl in the left group and the smallest distance dr in the right group. 
 
Put back together:  Consider dl and dr and choose the minimum of these two values—call 
this value d.  Unfortunately, d may not be the minimum for the original set because the 
minimum distance might involve a point in the left set and a point in the right set. 
 
The challenge:  We must determine if there is a pair of points, one from the left set and 
one from the right set, whose distance is less than d.  If we can do this in linear time, 
then we would have a recurrence relation that looks like mergesort:   
 

( ) ( ) )log()(22...)(22)( nnknnTnnTnT k
k Θ=Θ+=Θ+=  

 
 
Some preliminary steps:   
 
The trivial case for the recursion is three points or less because we want to make sure that 
in any division, there is a pair of points on each side of the dividing line. 
 
How do we divide the points quickly into two groups?  We’ll sort (using an nlogn sort!) 
by x-coordinate.   
 
It turns out that it will also be helpful to maintain the points sorted by y-coordinate as 
well—we’ll see why soon.  So we’ll also sort by y-coordinate, keeping that list of points 
in a second array. 
 
 
What points in the left and right sets must we compare? 
 
 Suppose there are two points, one in the left set and one in the right set, whose 
distance is less than d.  Then these two points must lie in the strip of width 2d centered on 
the dividing line.  So when we piece the solution back together, we must consider only 
points in this strip.  Of course, if most of the points are in fact in this strip, a brute-force 
approach might still be quadratic.   
 



 Note that if we test the points from “bottom-up”, which we can do since we have 
a list sorted by y-coordinate, we only need to check the points “above” the point we are 
testing.  So naïvely, we have something that looks like nested loops: 
for (i=1; i<=n-1; ++i) 
  for (j=i+1; j<=n; ++j) 
     Compare distance from point pi to pj    //only if points are in the “strip” 
    //points are stored in increasing order of y-coordinate 
 
Our job is to reduce the running time of these nested loops. 
 
The key observation: 
 
 Suppose pi is in the left set and suppose it is exactly d units away from the 
dividing line (worst case).  Then any point that we need to compare pi to must have a y-
coordinate in the 2d-x-d rectangle, where pi is the point on the lower-left corner.  Let’s 
divide this rectangle into 8 subsquares, each of dimension d/2-x-d/2.  Now, there can’t be 
more than one point in any of these smaller squares, because if there were, the distance 
between them would be less than d.  (This is the pigeonhole principle coming into play 
here.)  And since pi is in one of the squares, there are at most only 7 other points for 
which we need to calculate distances.  So the inner loop above becomes constant in 
length and the total running time of examining the points in the strip is ).(nΘ  (7n, to be 
precise). 
 
 
A final subtlety: 
 
The algorithmic complexity of this approach depends on needing lists of points, at each 
recursive call, that are sorted by x-coordinate and also by y-coordinate.  The first thing to 
observe is that if we sort at each recursive call, the complexity of the algorithm goes up 
from )log( nnΘ to )log( 2 nnΘ .   
 
Here are the details of a familiar recurrence argument: 
 

( ) ( ) ( ) ( ) ( ) nnnnnWnnnnnWnnnWnW log2log22log]2log
222[2log22)( 2

2
2 ++=++=+=

 
=… 
 

( ) ( ) ( ) ( ) nnnnnnnnnW kkk
k log2log...2log2log22 121 +++++ −− = 

 

)log(
2

)1)(log(log
2

)1(])1(...21[1 2 nnnnnnkknnkknn Θ=



 +

+=



 +

+=+−++++⋅  

 
 
 



 
 
 
If we presort by x-coordinate, then it’s easy to pass to the recursive subcalls the 
appropriate left and right sublists, still sorted by x-coordinate.  
 
For example, suppose our list of points were:  
   X = [(1,10), (2,15), (3,5), (4,30), (5,3), (6,18), (7,20), (8,8)]  
 
It is easy to see that when we take the left half and the right half and pass to the recursive 
routines, the lists are still sorted by x-coordinate. 
 
We just need to make sure that we can also pass the recursive calls the appropriate “left-
sided” points and the appropriate “right-sided” points, still sorted by y-coordinate.  But 
we can do this in linear time by essentially performing the reverse of the merge 
operation: 
 
Y = [(5,3), (3,5), (8,8), (1,10), (2,15), (6,18), (7,20), (4,30)] 
 
Using 4 as the x-coordinate cutoff point for deciding “right versus left”, we can in linear 
time produce the following two sets: 
 
YL = [(3,5), (1,10), (2,15), (4,30)] and YR = [(5,3), (8,8), (6,18), (7,20)] 
 
 
Finally, when we return from the recursive calls, we can examine the points in ascending 
y-coordinate order and create a new list which contains points only in the strip of width 
2d.  These are the points that would be examined in the nested loops considered 
previously.  Of course, this can be done in linear time. 
 
 


	Closest Pairs Problem

