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Floyd’s Algorithm (Dynamic Programming) 

 

The All-Pairs Shortest Path Problem 

 

 We have seen Dijkstra’s algorithm for solving the single-source shortest path problem, 

which computes all the shortest paths in a graph from a single starting vertex s.  This algorithm, 

on dense graphs, is essentially O(|V|2).  If we needed the shortest path between every distinct pair 

of vertices in a graph, then we could run Dijkstra’s algorithm |V| times (once for each vertex as 

the source) to obtain the solution in O(|V|3) time. 

 

   There is a dynamic programming solution that is also O(|V|3).  However, because of its 

innate efficiency, this algorithm tends to outperform multiple iterations of Dijkstra’s algorithm.  

This algorithm is known as Floyd’s algorithm, is named for its designer and was developed in 

1962. 

 

Data Structure:  Again, we’ll use matrices, in particular a series of matrices )()1()0( ,...,, nFFF

where )0(F is the “weight matrix of the graph G (with n vertices).  So )0(

ijf contains a 0 if ji = , 

has the value  if i and j are not connected by an edge, and contains the value cost( i , j ) if  i

and j are adjacent. 

 

 

Notation:  For an entry of )(kF , )(k

ijf denotes the shortest path from i to j using intermediate 

vertices only from the set },...,{ 21 kvvv  

 

 

What we need to compute:  )(nF , because each entry )(n

ijf  will hold the length of the shortest 

path from i to j with no restriction on the intermediate vertices.  That is, )(n

ijf  will hold the length 

of the shortest path in G from i to j . 

  

 

The key observation:  In computing paths from i to j using vertices numbered k  or less, all such 

paths can be divided into two classes: 

 

1.  Paths that do not use vertex k .  In this case the shortest path in this group will be given 

by )1( −k

ijf  

2. Paths that do use vertex k .  Note that such paths will not use vertex k more than once as 

an intermediate vertex, because otherwise the path would contain a cycle, which could be 

removed to shorten the path.  So the path must look like this: 

 

jki vvv ...... where every vertex in the portions represented by … are labeled with 

subscripts less than k .  Now, since the shortest path problem has the optimal 
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substructure property, the shortest path in this second class of paths will be equal 

to 

the length of the shortest path from iv to kv (that uses vertices labeled less than k ) 

+ 

the length of the shortest path from kv to jv (that uses vertices labeled less than k ) 

 

  But these values are )1( −k

ikf and )1( −k

kjf  respectively. 

 

 

 So the recurrence relation that we seek is: 

 

  1),,min( )1()1()1()( += −−− kffff k
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with ),()0( jiweightf ij =  

 

 

Pseudo Code: 

 

void Floyd(int[ ] [ ] F) // F is initialized as the “weight” matrix 

 { 

    for (k=1; k<=n; ++k) 

      for (i=1; i<=n; ++i) 

        for (j=1; j<=n; ++j) 

          F[i,j] = min(F[i,j], F[i,k]+F[k,j]  //note:  we’re overwriting the matrix 

      //this is ok 

} 

 

Complexity:  The above algorithm is easily seen to be ( )3n . 

 

The obvious modification:  In addition to knowing the length of all the paths, it would be nice to 

be able to recover the paths themselves, if necessary.   

 

Why can we overwrite the matrix? (That is, why do we only need one matrix?) To compute the 

elements of )(iF , we use only the current values and the 
thi row and column of the “previous” 

matrix.  But these values don’t change. 

 

 

An example:  (the values of the various matrices are given to demonstrate the execution of the 

algorithm. Dry run the code and look in detail at the computation of some of the matrix entries. 
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