
1

Floyd’s Algorithm (Dynamic Programming)

The All-Pairs Shortest Path Problem

 We have seen Dijkstra’s algorithm for solving the single-source shortest path problem,

which computes all the shortest paths in a graph from a single starting vertex s. This algorithm,

on dense graphs, is essentially O(|V|2). If we needed the shortest path between every distinct pair

of vertices in a graph, then we could run Dijkstra’s algorithm |V| times (once for each vertex as

the source) to obtain the solution in O(|V|3) time.

 There is a dynamic programming solution that is also O(|V|3). However, because of its

innate efficiency, this algorithm tends to outperform multiple iterations of Dijkstra’s algorithm.

This algorithm is known as Floyd’s algorithm, is named for its designer and was developed in

1962.

Data Structure: Again, we’ll use matrices, in particular a series of matrices)()1()0(,...,, nFFF

where)0(F is the “weight matrix of the graph G (with n vertices). So)0(

ijf contains a 0 if ji = ,

has the value if i and j are not connected by an edge, and contains the value cost(i , j) if i

and j are adjacent.

Notation: For an entry of)(kF ,)(k

ijf denotes the shortest path from i to j using intermediate

vertices only from the set },...,{ 21 kvvv

What we need to compute:)(nF , because each entry)(n

ijf will hold the length of the shortest

path from i to j with no restriction on the intermediate vertices. That is,)(n

ijf will hold the length

of the shortest path in G from i to j .

The key observation: In computing paths from i to j using vertices numbered k or less, all such

paths can be divided into two classes:

1. Paths that do not use vertex k . In this case the shortest path in this group will be given

by)1(−k

ijf

2. Paths that do use vertex k . Note that such paths will not use vertex k more than once as

an intermediate vertex, because otherwise the path would contain a cycle, which could be

removed to shorten the path. So the path must look like this:

jki vvv where every vertex in the portions represented by … are labeled with

subscripts less than k . Now, since the shortest path problem has the optimal

2

substructure property, the shortest path in this second class of paths will be equal

to

the length of the shortest path from iv to kv (that uses vertices labeled less than k)

+

the length of the shortest path from kv to jv (that uses vertices labeled less than k)

 But these values are)1(−k

ikf and)1(−k

kjf respectively.

 So the recurrence relation that we seek is:

 1),,min()1()1()1()(+= −−− kffff k

kj

k

ik

k

ij

k

ij
with),()0(jiweightf ij =

Pseudo Code:

void Floyd(int[] [] F) // F is initialized as the “weight” matrix

 {

 for (k=1; k<=n; ++k)

 for (i=1; i<=n; ++i)

 for (j=1; j<=n; ++j)

 F[i,j] = min(F[i,j], F[i,k]+F[k,j] //note: we’re overwriting the matrix

 //this is ok

}

Complexity: The above algorithm is easily seen to be ()3n .

The obvious modification: In addition to knowing the length of all the paths, it would be nice to

be able to recover the paths themselves, if necessary.

Why can we overwrite the matrix? (That is, why do we only need one matrix?) To compute the

elements of)(iF , we use only the current values and the
thi row and column of the “previous”

matrix. But these values don’t change.

An example: (the values of the various matrices are given to demonstrate the execution of the

algorithm. Dry run the code and look in detail at the computation of some of the matrix entries.

=

06

107

02

30

)0(F

3

=

096

107

502

30

)1(F

=

096

1079

502

30

)2(F

=

09166

1079

6502

43100

)3(F

=

09166

1077

6502

43100

)4(F

