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1 Chapter 1

Problem 1. (Exercise 4)
Prove A ∪ ∅ = A and A ∩ ∅ = ∅.

Solution 1.
A ∪ ∅ = {x ∈ A or x ∈ ∅} = {x ∈ A} = A

and
A ∩ ∅ = {x ∈ A and x ∈ ∅} = ∅.

If proving it this way seems unsatisfactory, an alternative proof of the first statement would be:
Let x ∈ A ∪ ∅, then x ∈ A or x ∈ ∅, but since x 6∈ ∅, then x ∈ A, so A ∪ ∅ ⊆ A.
Now, if x ∈ A, then x ∈ A ∪ ∅, so A ⊆ A ∪ ∅. Therefore A ∪ ∅ = A.
An alternative proof for the second statement can be proved as follows:
For the sake of contradiction, suppose A∩∅ 6= ∅. Then there exists an x ∈ A∩∅. But then x ∈ A and x ∈ ∅.
But there is no x ∈ ∅, therefore we’ve reached a contradiction. Hence A ∩ ∅ = ∅.

Problem 2. (Exercise 13)
Prove (A ∪B) \B = A \B.

Solution 2. Let’s first prove that (A ∪B) \B ⊆ A \B.
Suppose x ∈ (A ∪ B) \ B. Then x ∈ (A ∪ B) and x 6∈ B. Since x ∈ (A ∪ B), x ∈ A or x ∈ B. But x 6∈ B,
which forces x ∈ A. Therefore x ∈ A and x 6∈ B, which implies that x ∈ A \B.
Now let’s prove that A \B ⊆ (A ∪B) \B.
Let x ∈ A \ B. Then x ∈ A and x 6∈ B. Since x ∈ A, then x ∈ (A ∪ B). Therefore x ∈ (A ∪ B) and x 6∈ B,
which implies x ∈ (A ∪B) \B.

Problem 3. (Exercise 18)
Determine which of the following functions are one-to-one and which are onto. If the function is not onto,
determine its range.

(a) f : R→ R defined by f(x) = ex

(b) f : Z→ Z defined by f(n) = n2 + 3

(c) f : R→ R defined by f(x) = sinx

(d) f : Z→ Z defined by f(x) = x2

Solution 3.

(a) f is one-to-one because if ex = ey, then ex−y = 1, which implies that x− y = 0 and hence x = y.
f is not onto because ex is never negative. The range of f is {x ∈ R | x > 0}.

(b) f is not one-to-one because f(1) = f(−1) = 4.
f is not onto because n2 + 3 is never negative. The range of f is {n2 + 3 | n ∈ Z}.
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(c) f is not one-to-one because sin 0 = sinπ = 0.
f is not onto because | sinx| ≤ 1. The range of f is {x ∈ R | −1 ≤ x ≤ 1}.

(d) f is not one-to-one because f(1) = f(−1) = 1.
f is no onto because f is never negative. The range of f is {x2 | x ∈ Z}.

Problem 4. (Exercise 22)
Let f : A→ B and g : B → C be maps.

(a) If f and g are both one-to-one functions, show that g ◦ f is one-to-one.

(b) If g ◦ f is onto, show that g is onto.

(c) If g ◦ f is one-to-one, show that f is one-to-one.

(d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one.

(e) If g ◦ f is onto and g is one-to-one, show that f is onto.

Solution 4.

(a) Suppose g ◦ f(x) = g ◦ f(y), i.e., g(f(x)) = g(f(y)). Since g is one-to-one, then f(x) = f(y). Since f
is one-to-one, then x = y. Therefore g ◦ f is one-to-one.

(b)

(c) Suppose f(x) = f(y), then g(f(x)) = g(f(y)). Since g ◦ f is one-to-one and g ◦ f(x) = g ◦ f(y), then
x = y. Therefore f is one-to-one.
An alternative proof would be to assume for the sake of contradiction that f is not one-to-one, i.e.,
there exist distinct x and y such that f(x) = f(y). But then g(f(x)) = g(f(y), which implies that
x = y, contradicting the fact that x and y are distinct.
The two proofs are very similar but I wrote both of them to illustrate that you don’t have to think
about it a certain way.

(d)

(e) Let b ∈ B. Now consider c = g(b) ∈ C. Since g ◦ f is onto, then there exists an a ∈ A such that
g ◦ f(a) = c. Therefore g(f(a)) = c = g(b). Since g is one-to-one, f(a) = b. So we’ve shown that there
exists an a ∈ A such that f(a) = b, which shows that f is onto.

Problem 5. (Exercise 24)
Let f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .

(a) Prove f(A1 ∪A2) = f(A1) ∪ f(A2).

(b) Prove f(A1 ∩A2) ⊂ f(A1) ∩ f(A2). Give an example in which equality fails.

(c) Prove f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2), where

f−1(B) = {x ∈ X : f(x) ∈ B}.

(d) Prove f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(e) Prove f−1(Y \B1) = X \ f−1(B1).

Solution 5.

(a) Let x ∈ f(A1 ∪ A2). Then there exists a y ∈ A1 ∪ A2 such that f(y) = x. Since y ∈ A1 ∪ A2, y ∈ A1

or y ∈ A2, so x ∈ f(A1) or x ∈ f(A2), so x ∈ f(A1) ∪ f(A2).
Now, let x ∈ f(A1) ∪ f(A2), so x ∈ f(A1) or x ∈ f(A2). If x ∈ f(A1), then there exists y ∈ A1 such
that f(y) = x. Since y ∈ A1, then y ∈ A1 ∪A2, so x ∈ f(A1 ∪A2). Similarly, if x ∈ f(A2), then there
exists y ∈ A2 such that f(y) = x. Since y ∈ A2, then y ∈ A1 ∪ A2, so x ∈ f(A1 ∪ A2). In either case,
x ∈ f(A1 ∪A2). Therefore f(A1 ∪A2) = f(A1) ∪ f(A2).
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(b) Let x ∈ f(A1 ∩A2). Then there exists y ∈ A1 ∩A2 such that f(y) = x. Since y ∈ A1, then x ∈ f(A1).
Similarly, since y ∈ A2, we have that x ∈ f(A2). Since x ∈ f(A1) and x ∈ f(A2), we can conclude that
x ∈ f(A1) ∩ f(A2), which proves that f(A1 ∩A2) ⊆ f(A1) ∩ f(A2).
An example where equality fails is the following. Let f : R → R be defined by f(x) = x2. Now, let
A1 = {−1, 2}. Let A2 = {1, 2}. So f(A1 ∩ A2) = f({2}) = {4}, while f(A1) ∩ f(A2) = f({−1, 2}) ∩
f({1, 2}) = {1, 4} ∩ {1, 4} = {1, 4} 6= {4}.

(c) Let x ∈ f−1(B1 ∪ B2). Then f(x) ∈ B1 ∪ B2. So f(x) ∈ B1 or f(x) ∈ B2. Therefore x ∈ f−1(B1) or
x ∈ f−1(B2), which implies that x ∈ f−1(B1) ∪ f−1(B2).
Now, let x ∈ f−1(B1) ∪ f−1(B2). Therefore f(x) ∈ B1 or f(x) ∈ B2, which implies that x ∈
f−1(B1 ∪B2).

(d) Let x ∈ f−1(B1 ∩ B2). Then f(x) ∈ B1 ∩ B2. So f(x) ∈ B1 and f(x) ∈ B2. Therefore x ∈ f−1(B1)
and x ∈ f−1(B2), which implies that x ∈ f−1(B1) ∩ f−1(B2).
Now, let x ∈ f−1(B1) ∩ f−1(B2). Therefore f(x) ∈ B1 and f(x) ∈ B2, which implies that x ∈
f−1(B1 ∩B2).

(e) Let x ∈ f−1(Y \ B1). Then f(x) ∈ Y \ B1, so f(x) ∈ Y and f(x) 6∈ B1. Since f(x) ∈ Y , then x ∈ X.
Since f(x) 6∈ B1, then x 6∈ f−1(B1). Therefore x ∈ X \ f−1(B1).
Now, let x ∈ X \ f−1(B1). Then x ∈ X and x 6∈ f−1(B1). Since x ∈ X, f(x) ∈ Y . Since x 6∈ f−1(B1),
f(x) 6∈ B1. Therefore f(x) ∈ Y \B1, which implies that x ∈ f−1(Y \B1).

Problem 6. (Exercise 25)
Determine whether or not the following relations are equivalence relations on the given set. If the relation
is an equivalence relation, describe the partition given by it. If the relation is not an equivalence relation,
state why it fails to be one.

(a) x ∼ y in R if x ≥ y

(b) m ∼ n in Z if mn > 0

(c) x ∼ y in R if |x− y| ≤ 4

(d) m ∼ n in Z if m ≡ n (mod 6)

Solution 6.

(a) It’s not an equivalence relation because it is not symmetric. For example 3 ∼ 2 because 3 ≥ 2, but
2 6∼ 3 since 2 6≥ 3.

(b) It’s not an equivalence relation because it is not reflexive since 0 6∼ 0.

(c) It’s not an equivalence relation because it is not transitive. Indeed, 4 ∼ 0 since |4− 0| ≤ 4 and 0 ∼ −4
since |0− (−4)| ≤ 4. Yet 4 6∼ −4 because |4− (−4)| = 8 > 4.

(d) It is an equivalence relation. The equivalence relation partitions the set Z into the following six
equivalence classes:

• [0] is the set of multiples of 6.

• [1] is the set of numbers of the form 6k + 1 for some integer k.

• [2] is the set of numbers of the form 6k + 2 for some integer k.

• [3] is the set of numbers of the form 6k + 3 for some integer k.

• [4] is the set of numbers of the form 6k + 4 for some integer k.

• [5] is the set of numbers of the form 6k + 5 for some integer k.
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2 Chapter 2

Problem 7. (Exercise 1)
Prove that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for n ∈ N.

Solution 7. We will prove it by induction.
The statement is true for n = 1 since, the left hand side of the equation is 12 = 1 and the right hand side is

1(1 + 1)(2(1) + 1)

6
=

6

6
= 1.

Assume that for an integer k ≥ 1, the statement is true for n = k, i.e., we have that

12 + 22 + . . .+ k2 =
k(k + 1)(2k + 1)

6
.

Therefore

12 + 22 + . . .+ k2 + (k + 1)2 = (12 + 22 + . . .+ k2) + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)

(
k(2k + 1)

6
+ (k + 1)

)
= (k + 1)

(
2k2 + k + 6(k + 1)

6

)
=
k + 1

6

(
2k2 + 7k + 6

)
=
k + 1

6
((k + 2)(2k + 3))

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

Therefore the statement is true for n = (k + 1). The proof is complete.

Problem 8. (Exercise 3)
Prove that n! > 2n for n ≥ 4.

Solution 8.

Problem 9. (Exercise 7)
Show that

n
√
a1a2 · · · an ≤

1

n

n∑
k=1

ak,

for n ∈ N and positive real numbers a1, a2, . . . an.

Solution 9. First note that it is true for n = 1 since in that case 1
√
a1 = a1 =

a1
1
.

We will first prove it for the powers of 2, so let n = 2r. We will do induction on r (the exponent of 2).
When r = 1, we want to prove

a1 + a2
2

≥
√
a1a2.

By squaring both sides we see that we want to prove(
a1 + a2

2

)2

≥ a1a2.
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(Note: Squaring is not always valid when proving inequalities. In this case it is valid because the ai are
positive.)
So we want to prove that

a21 + 2a1a2 + a22 ≥ 4a1a2

a21 − 2a1a2 + a22 ≥ 0

(a1 − a2)2 ≥ 0.

But the last statement is clearly true, since x2 ≥ 0 for any x ∈ R.
So we’ve proven the statement for r = 1, i.e., for n = 21 = 2. Now, to continue by induction suppose

that the inequality is true for r = k, i.e.,

1

2k

2k∑
i=1

ai ≥ 2k
√
a1a2a3 · · · a2k .

Now we want to prove it for r = k + 1, i.e., we want to prove

1

2k+1

2k+1∑
i=1

ai ≥ 2k+1√a1a2a3 · · · a2k+1 .

Let’s manipulate the left hand side by first expanding the sum, then grouping in pairs and using the inequality
for n = 2 and finally using the induction hypothesis (the case n = 2k):

1

2k+1

2k+1∑
i=1

ai =
a1 + a2 + a3 + . . .+ a2k+1−1 + a2k+1

2k+1

=

(
a1+a2

2

)
+
(
a3+a4

2

)
+ . . .+

(
a
2k+1−1

+a
2k+1

2

)
2k

≥
√
a1a2 +

√
a3a4 + . . .+

√
a2k+1−1a2k+1

2k

≥ 2k
√√

a1a2
√
a3a4 · · ·

√
a2k+1−1a2k+1

= 2k
√√

a1a2a3a4 · · · a2k+1−1a2k+1

= 2k+1√a1a2a3a4 · · · a2k+1−1a2k+1 .

So we have proven the inequality for all powers of 2. So now we know the statement is true for n =
1, 2, 4, 8, 16, 32, 64, 128, . . ., but we don’t know what happens with the values in between. To prove the values
in between we’ll use “reverse-induction”. “Reverse-induction” is where you prove that if the inequality is
true for n = k, then the inequality is true for n = k − 1. If we manege to prove this implication, we can fill
in the holes. For example, since we know the inequality for powers of 2, it is true for n = 64, if we can prove
that k → k − 1, then it would be true for n = 63, but then it would be true for n = 62, and so on. The
reason reverse-induction is a valid strategy is that we already proved it for all powers of 2, so we can leap to
the next power of 2 and then fill in the gaps below it.

Without further ado, let’s prove the “reverse-induction” implication. Suppose the inequality is true for
n = k, i.e.,

a1 + a2 + . . .+ ak
k

≥ k
√
a1a2 · · · ak.

Now let’s prove it for n = k− 1. Suppose we have b1, b2, . . . bk−1 be positive real numbers. We want to show

b1 + b2 + . . .+ bk−1

k − 1
≥ k−1

√
b1b2 · · · bk−1.

Let

bk =
b1 + b2 + . . .+ bk−1

k − 1
.
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By the “reverse-induction” hypothesis, we know

b1 + b2 + . . .+ bk−1 + bk
k

≥ k
√
b1b2 · · · bk−1bk. (1)

The left-hand-side is:

b1 + b2 + . . .+ bk−1 + bk
k

=
b1 + b2 + . . .+ bk−1 +

(
b1+b2+...+bk−1

k−1

)
k

=
(k − 1)(b1 + b2 + . . .+ bk−1) + (b1 + b2 + . . .+ bk−1)

k(k − 1)

=
b1 + b2 + . . .+ bk−1

k − 1
.

And the right-hand-side is:

k
√
b1b2 · · · bk−1bk = k

√
b1b2 · · · bk−1

(
b1 + b2 + . . . bk−1

k − 1

)

= k
√
b1b2 · · · bk−1

k

√(
b1 + b2 + . . . bk−1

k − 1

)

= (b1b2 · · · bk−1)
1
k

(
b1 + b2 + . . . bk−1

k − 1

) 1
k

.

Therefore (1) becomes

b1 + b2 + . . . bk−1

k − 1
≥ (b1b2 · · · bk−1)

1
k

(
b1 + b2 + . . . bk−1

k − 1

) 1
k

,

so (
b1 + b2 + . . . bk−1

k − 1

)1− 1
k

≥ (b1b2 · · · bk−1)
1
k ,

which implies (by raising both sides to the k) that(
b1 + b2 + . . . bk−1

k − 1

)k−1

≥ (b1b2 · · · bk−1).

Now by taking the (k − 1)-th root on both sides (valid because both sides are positive), we get the desired
inequality, i.e.,

b1 + b2 + . . . bk−1

k − 1
≥ k−1

√
b1b2 · · · bk−1.

The “reverse-induction” is complete and hence the statement is true for all n ∈ N.

Problem 10. (Exercise 15)
For each of the following pairs of numbers a and b, calculate gcd(a, b) and find integers r and s such that
gcd(a, b) = ra+ sb.

(a) 14 and 39

(b) 234 and 165

(c) 1739 and 9923

(d) 471 and 562

(e) 23,771 and 19,945
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(f) −4357 and 3754

Solution 10.

(a)

39 = 14× 2 + 11

14 = 11× 1 + 3

11 = 3× 3 + 2

3 = 2× 1 + 1.

Therefore the gcd is 1. Now,

1 = 3− 2× 1

= 3− (11− 3× 3)× 1

= 3× 4− 11× 1

= (14− 11)× 4− 11× 1

= 14× 4− 11× 5

= 14× 4− (39− 14× 2)× 5

= 14× 14− 39× 5.

Therefore if r = 14 and s = −5 we have 14a+ 39b = 1.

(b)

(c)

9923 = 1739× 5 + 1228

1739 = 1228× 1 + 511

1228 = 511× 2 + 206

511 = 206× 2 + 99

206 = 99× 2 + 8

99 = 8× 12 + 3

8 = 3× 2 + 2

3 = 2× 1 + 1.

Therefore the gcd is 1.
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Now,

1 = 3− 2× 1

= 3− (8− 3× 2)× 1

= 3× 3− 8× 1

= (99− 8× 12)× 3− 8× 1

= 99× 3− 8× 37

= 99× 3− (206− 99× 2)× 37

= 99× 77− 206× 37

= (511− 206× 2)× 77− 206× 37

= 511× 77− 206× 191

= 511× 77− (1228− 511× 2)× 191

= 511× 459− 1228× 191

= (1739− 1228× 1)× 459− 1228× 191

= 1739× 459− 1228× 650

= 1739× 459− (9923− 1739× 5)× 650

= 1739× 3709− 9923× 650.

Therefore if r = 3709 and s = −650 we have 1739r + 9923s = 1.

(d)

(e)

23771 = 19945× 1 + 3826

19945 = 3826× 5 + 815

3826 = 816× 4 + 566

815 = 566× 1 + 249

566 = 249× 2 + 68

249 = 68× 3 + 45

68 = 45× 1 + 23

45 = 23× 1 + 22

23 = 22× 1 + 1

Therefore the gcd is 1.
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Now,

1 = 23− 22× 1

= 23− (45− 23× 1)× 1

= 23× 2− 45× 1

= (68− 45× 1)× 2− 45× 1

= 68× 2− 45× 3

= 68× 2− (249− 68× 3)× 3

= 68× 11− 249× 3

= (566− 249× 2)× 11− 249× 3

= 566× 11− 249× 25

= 566× 11− (815− 566× 1)× 25

= 566× 36− 815× 25

= (3826− 815× 4)× 36− 815× 25

= 3826× 36− 815× 169

= 3826× 36− (19945− 3826× 5)× 169

= 3826× 881− 19945× 169.

= (23771− 19945× 1)× 881− 19945× 169

= 23771× 881− 19945× 1050.

Therefore if r = 881 and s = −1050 we have 23771r + 19945s = 1.

(f)

−4357 = 3754× (−2) + 3151

3754 = 3151× 1 + 603

3151 = 603× 5 + 136

603 = 136× 4 + 59

136 = 59× 2 + 18

59 = 18× 3 + 5

18 = 5× 3 + 3

5 = 3× 1 + 2

3 = 2× 1 + 1.

Therefore the gcd is 1.
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Now,

1 = 3− 2× 1

= 3− (5− 3× 1)× 1

= 3× 2− 5× 1

= (18− 5× 3)× 2− 5× 1

= 18× 2− 5× 7

= 18× 2− (59− 18× 3)× 7

= 18× 23− 59× 7

= (136− 59× 2)× 23− 59× 7

= 136× 23− 59× 53

= 136× 23− (603− 136× 4)× 53

= 136× 235− 603× 53

= (3151− 603× 5)× 235− 603× 53

= 3151× 235− 603× 1228

= 3151× 235− (3754− 3151× 1)× 1228

= 3151× 1463− 3754× 1228

= (−4357− 3754× (−2))× 1463− 3754× 1228

= (−4357)× 1463 + 3754× 1698

Therefore if r = 1463 and s = 1698 we have (−4357)r + 3754s = 1.

Problem 11. (Exercise 23)
Define the least common multiple of two nonzero integers a and b, denoted by lcm(a, b), to be the
nonnegative integer m such that both a and b divide m, and if a and b divide any other integer n, then m
also divides n. Prove that any two integers a and b have a unique least common multiple.

Solution 11.

Problem 12. (Exercise 27)
Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and a | bc, then a | c.

Solution 12. Since a | bc, there exists an integer k such that ak = bc. Since gcd(a, b) = 1, there exist
integers r and s such that ar + bs = 1. Now multiply by c and we get

arc+ bcs = c

arc+ (ak)s = c

a(rc+ ks) = c.

Since rc+ ks is an integer, then a | c.
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