Homework 2 Solutions

Enrique Treviño

September 23, 2014

1 Chapter 3

Problem 1. (Exercise 2)

Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

(a)					
	0	a	b	c	d
-	a	a	c	d	a
	b	b	b	c	d
	c	c	d	a	b
	d	d	a	b	c
(b)					
-	0	a	<i>b</i>	С	<u>d</u>
	a	a	b	С	d
	b	b	a	d	c
	c	c	d	a	b
	d	d	c	b	a
(-)					
(\mathbf{c})		~	h		d
-	0	a	0	С	$\frac{a}{1}$
			D	c	a
	D	D	c	a	
	c	c	d		b
	d	d	a	b	c
(d)					
(u)	0	a	h	c	d
-	0	a	$\frac{b}{b}$	<i>c</i>	$\frac{u}{d}$
	$\frac{u}{b}$	u	0	c	u d
	0	0	u h	c	u d
	c J	C J	0	u h	a
	d	d	d	0	c

Solution 1. To turn in.

Problem 2. (Exercise 5)

Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily a symmetry of the square? The symmetry group of the square is denoted by D_4 .

Solution 2. There are eight symmetries:

- 1. The identity which we will call *id*.
- 2. Reflecting with respect to a vertical line, μ_1 .

- 3. Reflecting with respect to a horizontal line, μ_2 .
- 4. Reflecting with respect to the diagonal BD, μ_3 .
- 5. Reflecting with respect to the diagonal AC, μ_4 .
- 6. Rotating 90 degrees counter-clockwise: ρ_1 .
- 7. Rotating 180 degrees counter-clockwise: ρ_2 .
- 8. Rotating 270 degrees counter-clockwise: ρ_3 .

The result of composing one symmetry with another can be seen in the following table:

0	id	μ_1	μ_2	μ_3	μ_4	ρ_1	ρ_2	$ ho_3$
id	id	μ_1	μ_2	μ_3	μ_4	ρ_1	ρ_2	ρ_3
μ_1	μ_1	id	ρ_2	ρ_1	$ ho_3$	μ_3	μ_2	μ_3
μ_2	μ_2	ρ_2	id	$ ho_3$	ρ_1	μ_4	μ_1	μ_3
μ_3	μ_3	$ ho_3$	ρ_1	id	ρ_2	μ_2	μ_4	μ_1
μ_4	μ_4	ρ_1	$ ho_3$	ρ_2	id	μ_1	μ_3	μ_2
ρ_1	ρ_1	μ_4	μ_3	μ_1	μ_2	ρ_2	ρ_3	id
ρ_2	ρ_2	μ_2	μ_1	μ_4	μ_3	ρ_3	id	ρ_1
$ ho_3$	ρ_3	μ_3	μ_4	μ_2	μ_1	id	ρ_1	ρ_2

Not all permutations of ABCD result in a symmetry. For example the permutation BACD, i.e., changing A for B and keeping C and D fixed is not a symmetry since the angle $\angle CAB$ changes from 90° to 45° with that permutation.

Problem 3. (Exercise 7)

Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Solution 3. First let's show that * is closed, i.e., that if $a, b \in S$, then $a * b \in S$. Since S is every real except -1 then we want to show that if $a \neq -1$ and $b \neq -1$, then $a * b \neq -1$. For the sake of contradiction, suppose a * b = -1. Then

$$a + b + ab = -1$$

 $a(b + 1) + b = -1$
 $a(b + 1) = -(b + 1).$

Since $b \neq -1$, then we can divide both sides by b+1. But then we have that a = -1, which contradicts that $a \neq -1$. Therefore $a * b \neq -1$, so $a * b \in S$, so * is a binary operation on S.

Now let's show that * is associative. Suppose $a, b, c \in S$.

$$(a * b) * c = (ab + a + b) * c = (ab + a + b)(c) + (ab + a + b) + c$$

= $abc + ac + bc + ab + a + b + c$
= $a(bc + c + b) + a + (bc + b + c)$
= $a(b * c) + a + (b * c)$
= $a * (b * c).$

Therefore * is associative.

Let's show that 0 is the identity for S. Let $a \in S$. Then a * 0 = a + 0 + 0 = a and 0 * a = 0 + 0 + a = a. Therefore 0 * a = a * 0 = a, so 0 is the identity of S. To finish our proof that S is a group, we need to show every element has an inverse. Let $a \in S$. We want to find an inverse for a, so we want to find a $b \neq -1$ such that a * b = 0.

$$a * b = 0$$

$$ab + a + b = 0$$

$$b(a + 1) = -a$$

$$b = -\frac{a}{a + 1}.$$

Since $a \neq -1$, b exists and a * b = 0, so $b = -\frac{a}{a+1}$ is the inverse of a. Note that $b = -1 + \frac{1}{a+1} \neq -1$, so $b \in S$.

We've shown that S is a group together with the operation *. To show that it is an abelian group we must prove that * is commutative. Let $a, b \in S$. Then

$$a \ast b = ab + a + b = ba + b + a = b \ast a,$$

therefore it is an abelian group.

Problem 4. (Exercise 14)

Given the groups \mathbb{R}^* and \mathbb{Z} , let $G = \mathbb{R}^* \times \mathbb{Z}$. Define a binary operation \circ on G by $(a, m) \circ (b, n) = (ab, m+n)$. Show that G is a group under this operation.

Solution 4. To turn in.

Problem 5. (Exercise 16)

Give a specific example of some group G and elements $g, h \in G$ where $(gh)^n \neq g^n h^n$.

Solution 5. Consider the group D_4 (from Exercise 5). Let $g = \mu_1$ and $h = \mu_3$ and let n = 2. Then

$$(gh)^2 = (\mu_1 \circ \mu_3)^2 = (\rho_1)^2 = \rho_2,$$

while

$$g^{2}h^{2} = (\mu_{1}^{2}) \circ (\mu_{3}^{2}) = id \circ id = id.$$

Since $\rho_2 \neq id$, then $(gh)^2 \neq g^n h^n$.

Problem 6. (Exercise 17)

Give an example of three different groups with eight elements. Why are the groups different?

Solution 6. The groups \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ have 8 elements. Let's show they are all different. To show their difference we'll look at the subgroups they have.

 \mathbb{Z}_8 has only one subgroup with 2 elements, namely $\{0, 4\}$, while $\mathbb{Z}_4 \times \mathbb{Z}_2$ has 3 subgroups with 2 elements: $\{(0,0), (2,0)\}$, $\{(0,0), (0,1)\}$, and $\{(0,0), (2,1)\}$. On the other hand, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has 7 subgroups with 2 elements: $\{(0,0,0), (1,0,0)\}$, $\{(0,0,0), (1,0,1)\}$, $\{(0,0,0), (1,1,1)\}$, $\{(0,0,0), (0,1,1)\}$, $\{(0,0,0), (0,1,1)\}$, $\{(0,0,0), (0,0,1)\}$. Since all three groups have a different set of subgroups of order 2, they can't be the same group.

Problem 7. (Exercise 24)

Let a and b be elements in a group G. Prove that $ab^n a^{-1} = (aba^{-1})^n$ for $n \in \mathbb{Z}$.

Solution 7. For n = 0, $ab^0a^{-1} = aa^{-1} = e$ and $(aba^{-1})^0 = e$ too, so they match. Let's prove it by induction for $n \in \mathbb{N}$. If n = 1, then clearly $ab^1a^{-1} = (aba^{-1})^1$. Suppose that for some $k \ge 1$, then $ab^ka^{-1} = (aba^{-1})^k$. Let's prove that $ab^{k+1}a^{-1} = (aba^{-1})^{k+1}$.

Since $(aba^{-1})^k = ab^k a^{-1}$, then

$$(aba^{-1})^{k+1} = (aba^{-1})^k (aba^{-1}) = ab^k a^{-1} (aba^{-1})$$
$$= ab^k (a^{-1}a)ba^{-1}$$
$$= ab^k ba^{-1}$$
$$= ab^{k+1}a^{-1}.$$

Therefore the statement is true for all $n \in \mathbb{N}$. We're left with trying to prove the statement for n < 0.

Suppose n = -m where $m \in \mathbb{N}$. We want to show $ab^{-m}a^{-1} = (aba^{-1})^{-m}$. Now, $(aba^{-1})^{-1} = (ab^{-1}a^{-1})$, so $(aba^{-1})^{-m} = (ab^{-1}a^{-1})^m$. But since $m \in \mathbb{N}$, then $(ab^{-1}a^{-1})^m = ab^{-m}a^{-1}$. Therefore

$$(aba^{-1})^{-m} = ab^{-m}a^{-1}.$$

So the statement is true for negative numbers as well. Now we've shown it for all $n \in \mathbb{Z}$.

Problem 8. (Exercise 25)

Let U(n) be the group of units in \mathbb{Z}_n . If n > 2, prove that there is an element $k \in U(n)$ such that $k^2 = 1$ and $k \neq 1$.

Solution 8. gcd (n, n-1) = 1, therefore $n - 1 \in U(n)$. $(n-1)^2 \equiv (-1)^2 \equiv 1 \mod n$. Since n > 2, then n - 1 > 1, so $n - 1 \neq 1$. Therefore k = n - 1 satisfies the conditions in the problem.

Problem 9. (Exercise 30)

Show that if $a^2 = e$ for all elements a in a group G, then G must be abelian.

Solution 9. To turn in.

Problem 10. (Exercise 33)

Find all the subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$. Use this information to show that $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not the same group as \mathbb{Z}_9 .

Solution 10. To turn in.

Problem 11. (Exercise 34)

Find all the subgroups of the symmetry group of an equilateral triangle.

Solution 11. Define *id*, ρ_1 , ρ_2 , μ_1 , μ_2 , and μ_3 as the 6 symmetries of an equilateral triangle. *id* is the identity symmetry, ρ_1 is rotating 120°, ρ_2 is rotating 240° and μ_1, μ_2, μ_3 are the three possible reflections. Then the subgroups are:

- $\{id\},$
- $\{id, \mu_1\},\$
- $\{id, \mu_2\},\$
- $\{id, \mu_3\},\$
- $\{id, \rho_1, \rho_2\},\$
- $\{id, \mu_1, \mu_2, \mu_3, \rho_1, \rho_2\}.$

It is not hard to see that there are no other subgroups. Indeed any subgroup must have id. If you have ρ_1 , then you must have ρ_2 and viceversa since $\rho_1 \circ \rho_1 = \rho_2$ and $\rho_2 \circ \rho_2 = \rho_1$. If you have μ_i and ρ_j in the subgroup, then you must have the whole group because $\rho_1 \mu_i \neq \rho_2 \mu_i$, $\rho_1 \mu_i \neq \mu_i$, $\rho_2 \mu_i \neq \mu_i$ and neither of them is the identity. So you have at least 6 distinct elements: $\mu_i, \rho_1 \mu_i, \rho_2 \mu_i, id, \mu_i, \rho_1, \rho_2$. But the whole group of symmetries consists of 6 elements. That means the only subgroups are the subgroups listed.

Problem 12. (Exercise 36)

Let $H = \{2^k : k \in \mathbb{Z}\}$. Show that H is a subgroup of \mathbb{Q}^* .

Solution 12. To turn in.

Problem 13. (Exercise 37)

Let n = 0, 1, 2, ... and $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$. Prove that $n\mathbb{Z}$ is a subgroup of \mathbb{Z} . Show that these subgroups are the only subgroups of \mathbb{Z} .

Solution 13. First let's show $n\mathbb{Z}$ is a subgroup for any $n \in \mathbb{N} \cup \{0\}$:

(a) First let's show addition is closed on $n\mathbb{Z}$. If $a, b \in n\mathbb{Z}$, then there exist $k_1, k_2 \in \mathbb{Z}$ such that $a = k_1 n$ and $b = k_2 n$. Then

$$a + b = k_1 n + k_2 n = (k_1 + k_2) n \in n\mathbb{Z}.$$

- (b) The identity of \mathbb{Z} , 0, is an element of $n\mathbb{Z}$, since $0 = n \times 0$, so $0 \in n\mathbb{Z}$.
- (c) Finally, let's show that any element of $n\mathbb{Z}$ has an inverse. Indeed if $a \in n\mathbb{Z}$, then $a = k_1 n$ for some integer k_1 . Then $-a = -k_1 n = (-k_1)n \in n\mathbb{Z}$. Therefore the inverse of a is also an element of $n\mathbb{Z}$.

By (a), (b) and (c), $n\mathbb{Z}$ is a subgroup of \mathbb{Z} with the addition operation.

Now, we want to show that all subgroups of \mathbb{Z} are of the form $n\mathbb{Z}$ with $n \in \mathbb{N} \cup \{0\}$. Suppose $H \subseteq \mathbb{Z}$ is a subgroup. If $H = \{0\}$, then $H = 0\mathbb{Z}$. Suppose $H \neq \{0\}$. By the Well-Ordering principle, there exists a nonzero element $n \in H$ such that |n| is minimal. Since H is a subgroup of \mathbb{Z} , then the inverse of n is also in H, i.e., $-n \in H$. Since n and -n, then we can assume without loss of generality that n is positive. Since His a subgroup, then all multiples of n must be in H. This means that $n\mathbb{Z} \subseteq H$. Now suppose that there is an element $m \in H$ such that $m \notin n\mathbb{Z}$. By the division algorithm, there exist integers q and r such that:

$$m = qn + r$$

where $0 \le r < n$. Since $m \notin n\mathbb{Z}$, then $r \ne 0$. Since $m \in H$ and $qn \in H$, then $-qn \in H$, so $m - qn \in H$. Therefore $r \in H$. But 0 < r < n which implies that |r| < |N|, which contradicts the minimality of |n|. This means no element m exists. That proves that $H = n\mathbb{Z}$.

Problem 14. (Exercise 40)

Prove that

 $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } a \text{ and } b \text{ are not both zero}\}$

is a subgroup of \mathbb{R}^* under the group operation of multiplication.

Solution 14. To turn in.