Homework 2 Solutions

Enrique Treviño

September 23, 2014

1 Chapter 3

Problem 1. (Exercise 2)
Which of the following multiplication tables defined on the set $G=\{a, b, c, d\}$ form a group? Support your answer in each case.
(a)

\circ	a	b	c	d
a	a	c	d	a
b	b	b	c	d
c	c	d	a	b
d	d	a	b	c

(b)

\circ	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

(c)

\circ	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

(d)

\circ	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	b	a	d
d	d	d	b	c

Solution 1. To turn in.
Problem 2. (Exercise 5)
Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily a symmetry of the square? The symmetry group of the square is denoted by D_{4}.

Solution 2. There are eight symmetries:

1. The identity which we will call $i d$.
2. Reflecting with respect to a vertical line, μ_{1}.
3. Reflecting with respect to a horizontal line, μ_{2}.
4. Reflecting with respect to the diagonal $B D, \mu_{3}$.
5. Reflecting with respect to the diagonal $A C, \mu_{4}$.
6. Rotating 90 degrees counter-clockwise: ρ_{1}.
7. Rotating 180 degrees counter-clockwise: ρ_{2}.
8. Rotating 270 degrees counter-clockwise: ρ_{3}.

The result of composing one symmetry with another can be seen in the following table:

\circ	$i d$	μ_{1}	μ_{2}	μ_{3}	μ_{4}	ρ_{1}	ρ_{2}	ρ_{3}
$i d$	$i d$	μ_{1}	μ_{2}	μ_{3}	μ_{4}	ρ_{1}	ρ_{2}	ρ_{3}
μ_{1}	μ_{1}	$i d$	ρ_{2}	ρ_{1}	ρ_{3}	μ_{3}	μ_{2}	μ_{3}
μ_{2}	μ_{2}	ρ_{2}	$i d$	ρ_{3}	ρ_{1}	μ_{4}	μ_{1}	μ_{3}
μ_{3}	μ_{3}	ρ_{3}	ρ_{1}	$i d$	ρ_{2}	μ_{2}	μ_{4}	μ_{1}
μ_{4}	μ_{4}	ρ_{1}	ρ_{3}	ρ_{2}	$i d$	μ_{1}	μ_{3}	μ_{2}
ρ_{1}	ρ_{1}	μ_{4}	μ_{3}	μ_{1}	μ_{2}	ρ_{2}	ρ_{3}	$i d$
ρ_{2}	ρ_{2}	μ_{2}	μ_{1}	μ_{4}	μ_{3}	ρ_{3}	$i d$	ρ_{1}
ρ_{3}	ρ_{3}	μ_{3}	μ_{4}	μ_{2}	μ_{1}	$i d$	ρ_{1}	ρ_{2}

Not all permutations of $A B C D$ result in a symmetry. For example the permutation $B A C D$, i.e., changing A for B and keeping C and D fixed is not a symmetry since the angle $\angle C A B$ changes from 90° to 45° with that permutation.

Problem 3. (Exercise 7)

Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation on S by $a * b=a+b+a b$. Prove that $(S, *)$ is an abelian group.

Solution 3. First let's show that $*$ is closed, i.e., that if $a, b \in S$, then $a * b \in S$. Since S is every real except -1 then we want to show that if $a \neq-1$ and $b \neq-1$, then $a * b \neq-1$. For the sake of contradiction, suppose $a * b=-1$. Then

$$
\begin{aligned}
a+b+a b & =-1 \\
a(b+1)+b & =-1 \\
a(b+1) & =-(b+1)
\end{aligned}
$$

Since $b \neq-1$, then we can divide both sides by $b+1$. But then we have that $a=-1$, which contradicts that $a \neq-1$. Therefore $a * b \neq-1$, so $a * b \in S$, so $*$ is a binary operation on S.

Now let's show that $*$ is associative. Suppose $a, b, c \in S$.

$$
\begin{aligned}
(a * b) * c=(a b+a+b) * c & =(a b+a+b)(c)+(a b+a+b)+c \\
& =a b c+a c+b c+a b+a+b+c \\
& =a(b c+c+b)+a+(b c+b+c) \\
& =a(b * c)+a+(b * c) \\
& =a *(b * c) .
\end{aligned}
$$

Therefore $*$ is associative.
Let's show that 0 is the identity for S. Let $a \in S$. Then $a * 0=a+0+0=a$ and $0 * a=0+0+a=a$. Therefore $0 * a=a * 0=a$, so 0 is the identity of S.

To finish our proof that S is a group, we need to show every element has an inverse. Let $a \in S$. We want to find an inverse for a, so we want to find a $b \neq-1$ such that $a * b=0$.

$$
\begin{aligned}
a * b & =0 \\
a b+a+b & =0 \\
b(a+1) & =-a \\
b & =-\frac{a}{a+1} .
\end{aligned}
$$

Since $a \neq-1, b$ exists and $a * b=0$, so $b=-\frac{a}{a+1}$ is the inverse of a. Note that $b=-1+\frac{1}{a+1} \neq-1$, so $b \in S$.

We've shown that S is a group together with the operation $*$. To show that it is an abelian group we must prove that $*$ is commutative. Let $a, b \in S$. Then

$$
a * b=a b+a+b=b a+b+a=b * a
$$

therefore it is an abelian group.
Problem 4. (Exercise 14)
Given the groups \mathbb{R}^{*} and \mathbb{Z}, let $G=\mathbb{R}^{*} \times \mathbb{Z}$. Define a binary operation \circ on G by $(a, m) \circ(b, n)=(a b, m+n)$. Show that G is a group under this operation.

Solution 4. To turn in.
Problem 5. (Exercise 16)
Give a specific example of some group G and elements $g, h \in G$ where $(g h)^{n} \neq g^{n} h^{n}$.
Solution 5. Consider the group D_{4} (from Exercise 5). Let $g=\mu_{1}$ and $h=\mu_{3}$ and let $n=2$. Then

$$
(g h)^{2}=\left(\mu_{1} \circ \mu_{3}\right)^{2}=\left(\rho_{1}\right)^{2}=\rho_{2}
$$

while

$$
g^{2} h^{2}=\left(\mu_{1}^{2}\right) \circ\left(\mu_{3}^{2}\right)=i d \circ i d=i d
$$

Since $\rho_{2} \neq i d$, then $(g h)^{2} \neq g^{n} h^{n}$.
Problem 6. (Exercise 17)
Give an example of three different groups with eight elements. Why are the groups different?
Solution 6. The groups $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ have 8 elements. Let's show they are all different. To show their difference we'll look at the subgroups they have.
\mathbb{Z}_{8} has only one subgroup with 2 elements, namely $\{0,4\}$, while $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ has 3 subgroups with 2 elements: $\{(0,0),(2,0)\},\{(0,0),(0,1)\}$, and $\{(0,0),(2,1)\}$. On the other hand, $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has 7 subgroups with 2 elements: $\{(0,0,0),(1,0,0)\},\{(0,0,0),(1,0,1)\},\{(0,0,0),(1,1,0)\},\{(0,0,0),(1,1,1)\},\{(0,0,0),(0,1,0)\}$, $\{(0,0,0),(0,1,1)\},\{(0,0,0),(0,0,1)\}$. Since all three groups have a different set of subgroups of order 2 , they can't be the same group.

Problem 7. (Exercise 24)
Let a and b be elements in a group G. Prove that $a b^{n} a^{-1}=\left(a b a^{-1}\right)^{n}$ for $n \in \mathbb{Z}$.
Solution 7. For $n=0, a b^{0} a^{-1}=a a^{-1}=e$ and $\left(a b a^{-1}\right)^{0}=e$ too, so they match. Let's prove it by induction for $n \in \mathbb{N}$. If $n=1$, then clearly $a b^{1} a^{-1}=\left(a b a^{-1}\right)^{1}$. Suppose that for some $k \geq 1$, then $a b^{k} a^{-1}=\left(a b a^{-1}\right)^{k}$. Let's prove that $a b^{k+1} a^{-1}=\left(a b a^{-1}\right)^{k+1}$.

Since $\left(a b a^{-1}\right)^{k}=a b^{k} a^{-1}$, then

$$
\begin{aligned}
\left(a b a^{-1}\right)^{k+1}=\left(a b a^{-1}\right)^{k}\left(a b a^{-1}\right) & =a b^{k} a^{-1}\left(a b a^{-1}\right) \\
& =a b^{k}\left(a^{-1} a\right) b a^{-1} \\
& =a b^{k} b a^{-1} \\
& =a b^{k+1} a^{-1}
\end{aligned}
$$

Therefore the statement is true for all $n \in \mathbb{N}$. We're left with trying to prove the statement for $n<0$.
Suppose $n=-m$ where $m \in \mathbb{N}$. We want to show $a b^{-m} a^{-1}=\left(a b a^{-1}\right)^{-m}$. Now, $\left(a b a^{-1}\right)^{-1}=\left(a b^{-1} a^{-1}\right)$, so $\left(a b a^{-1}\right)^{-m}=\left(a b^{-1} a^{-1}\right)^{m}$. But since $m \in \mathbb{N}$, then $\left(a b^{-1} a^{-1}\right)^{m}=a b^{-m} a^{-1}$. Therefore

$$
\left(a b a^{-1}\right)^{-m}=a b^{-m} a^{-1}
$$

So the statement is true for negative numbers as well. Now we've shown it for all $n \in \mathbb{Z}$.
Problem 8. (Exercise 25)
Let $U(n)$ be the group of units in \mathbb{Z}_{n}. If $n>2$, prove that there is an element $k \in U(n)$ such that $k^{2}=1$ and $k \neq 1$.

Solution 8. $\operatorname{gcd}(n, n-1)=1$, therefore $n-1 \in U(n) .(n-1)^{2} \equiv(-1)^{2} \equiv 1 \bmod n$. Since $n>2$, then $n-1>1$, so $n-1 \neq 1$. Therefore $k=n-1$ satisfies the conditions in the problem.

Problem 9. (Exercise 30)
Show that if $a^{2}=e$ for all elements a in a group G, then G must be abelian.
Solution 9. To turn in.
Problem 10. (Exercise 33)
Find all the subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Use this information to show that $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is not the same group as \mathbb{Z}_{9}.
Solution 10. To turn in.
Problem 11. (Exercise 34)
Find all the subgroups of the symmetry group of an equilateral triangle.
Solution 11. Define $i d, \rho_{1}, \rho_{2}, \mu_{1}, \mu_{2}$, and μ_{3} as the 6 symmetries of an equilateral triangle. id is the identity symmetry, ρ_{1} is rotating $120^{\circ}, \rho_{2}$ is rotating 240° and $\mu_{1}, \mu_{2}, \mu_{3}$ are the three possible reflections.
Then the subgroups are:

- $\{i d\}$,
- $\left\{i d, \mu_{1}\right\}$,
- $\left\{i d, \mu_{2}\right\}$,
- $\left\{i d, \mu_{3}\right\}$,
- $\left\{i d, \rho_{1}, \rho_{2}\right\}$,
- $\left\{i d, \mu_{1}, \mu_{2}, \mu_{3}, \rho_{1}, \rho_{2}\right\}$.

It is not hard to see that there are no other subgroups. Indeed any subgroup must have $i d$. If you have ρ_{1}, then you must have ρ_{2} and viceversa since $\rho_{1} \circ \rho_{1}=\rho_{2}$ and $\rho_{2} \circ \rho_{2}=\rho_{1}$. If you have μ_{i} and ρ_{j} in the subgroup, then you must have the whole group because $\rho_{1} \mu_{i} \neq \rho_{2} \mu_{i}, \rho_{1} \mu_{i} \neq \mu_{i}, \rho_{2} \mu_{i} \neq \mu_{i}$ and neither of them is the identity. So you have at least 6 distinct elements: $\mu_{i}, \rho_{1} \mu_{i}, \rho_{2} \mu_{i}, i d, \mu_{i}, \rho_{1}, \rho_{2}$. But the whole group of symmetries consists of 6 elements. That means the only subgroups are the subgroups listed.

Problem 12. (Exercise 36)
Let $H=\left\{2^{k}: k \in \mathbb{Z}\right\}$. Show that H is a subgroup of \mathbb{Q}^{*}.
Solution 12. To turn in.
Problem 13. (Exercise 37)
Let $n=0,1,2, \ldots$ and $n \mathbb{Z}=\{n k: k \in \mathbb{Z}\}$. Prove that $n \mathbb{Z}$ is a subgroup of \mathbb{Z}. Show that these subgroups are the only subgroups of \mathbb{Z}.

Solution 13. First let's show $n \mathbb{Z}$ is a subgroup for any $n \in \mathbb{N} \cup\{0\}$:
(a) First let's show addition is closed on $n \mathbb{Z}$. If $a, b \in n \mathbb{Z}$, then there exist $k_{1}, k_{2} \in \mathbb{Z}$ such that $a=k_{1} n$ and $b=k_{2} n$. Then

$$
a+b=k_{1} n+k_{2} n=\left(k_{1}+k_{2}\right) n \in n \mathbb{Z}
$$

(b) The identity of $\mathbb{Z}, 0$, is an element of $n \mathbb{Z}$, since $0=n \times 0$, so $0 \in n \mathbb{Z}$.
(c) Finally, let's show that any element of $n \mathbb{Z}$ has an inverse. Indeed if $a \in n \mathbb{Z}$, then $a=k_{1} n$ for some integer k_{1}. Then $-a=-k_{1} n=\left(-k_{1}\right) n \in n \mathbb{Z}$. Therefore the inverse of a is also an element of $n \mathbb{Z}$.

By (a), (b) and (c), n \mathbb{Z} is a subgroup of \mathbb{Z} with the addition operation.
Now, we want to show that all subgroups of \mathbb{Z} are of the form $n \mathbb{Z}$ with $n \in \mathbb{N} \cup\{0\}$. Suppose $H \subseteq \mathbb{Z}$ is a subgroup. If $H=\{0\}$, then $H=0 \mathbb{Z}$. Suppose $H \neq\} 0\}$. By the Well-Ordering principle, there exists a nonzero element $n \in H$ such that $|n|$ is minimal. Since H is a subgroup of \mathbb{Z}, then the inverse of n is also in H, i.e., $-n \in H$. Since n and $-n$, then we can assume without loss of generality that n is positive. Since H is a subgroup, then all multiples of n must be in H. This means that $n \mathbb{Z} \subseteq H$. Now suppose that there is an element $m \in H$ such that $m \notin n \mathbb{Z}$. By the division algorithm, there exist integers q and r such that:

$$
m=q n+r
$$

where $0 \leq r<n$. Since $m \notin n \mathbb{Z}$, then $r \neq 0$. Since $m \in H$ and $q n \in H$, then $-q n \in H$, so $m-q n \in H$. Therefore $r \in H$. But $0<r<n$ which implies that $|r|<|N|$, which contradicts the minimality of $|n|$. This means no element m exists. That proves that $H=n \mathbb{Z}$.

Problem 14. (Exercise 40)
Prove that

$$
G=\{a+b \sqrt{2}: a, b \in \mathbb{Q} \text { and } a \text { and } b \text { are not both zero }\}
$$

is a subgroup of \mathbb{R}^{*} under the group operation of multiplication.
Solution 14. To turn in.

