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1 Chapter 3

Problem 1. (Exercise 2)
Which of the following multiplication tables defined on the set G = {a, b, c, d} form a group? Support your
answer in each case.

(a)
◦ a b c d
a a c d a
b b b c d
c c d a b
d d a b c

(b)
◦ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

(c)
◦ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

(d)
◦ a b c d
a a b c d
b b a c d
c c b a d
d d d b c

Solution 1. To turn in.

Problem 2. (Exercise 5)
Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for
the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily
a symmetry of the square? The symmetry group of the square is denoted by D4.

Solution 2. There are eight symmetries:

1. The identity which we will call id.

2. Reflecting with respect to a vertical line, µ1.
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3. Reflecting with respect to a horizontal line, µ2.

4. Reflecting with respect to the diagonal BD, µ3.

5. Reflecting with respect to the diagonal AC, µ4.

6. Rotating 90 degrees counter-clockwise: ρ1.

7. Rotating 180 degrees counter-clockwise: ρ2.

8. Rotating 270 degrees counter-clockwise: ρ3.

The result of composing one symmetry with another can be seen in the following table:

◦ id µ1 µ2 µ3 µ4 ρ1 ρ2 ρ3
id id µ1 µ2 µ3 µ4 ρ1 ρ2 ρ3
µ1 µ1 id ρ2 ρ1 ρ3 µ3 µ2 µ3

µ2 µ2 ρ2 id ρ3 ρ1 µ4 µ1 µ3

µ3 µ3 ρ3 ρ1 id ρ2 µ2 µ4 µ1

µ4 µ4 ρ1 ρ3 ρ2 id µ1 µ3 µ2

ρ1 ρ1 µ4 µ3 µ1 µ2 ρ2 ρ3 id
ρ2 ρ2 µ2 µ1 µ4 µ3 ρ3 id ρ1
ρ3 ρ3 µ3 µ4 µ2 µ1 id ρ1 ρ2

Not all permutations of ABCD result in a symmetry. For example the permutation BACD, i.e., changing
A for B and keeping C and D fixed is not a symmetry since the angle ∠CAB changes from 90◦ to 45◦ with
that permutation.

Problem 3. (Exercise 7)
Let S = R \ {−1} and define a binary operation on S by a ∗ b = a+ b+ ab. Prove that (S, ∗) is an abelian
group.

Solution 3. First let’s show that ∗ is closed, i.e., that if a, b ∈ S, then a∗ b ∈ S. Since S is every real except
−1 then we want to show that if a 6= −1 and b 6= −1, then a∗ b 6= −1. For the sake of contradiction, suppose
a ∗ b = −1. Then

a+ b+ ab = −1

a(b+ 1) + b = −1

a(b+ 1) = −(b+ 1).

Since b 6= −1, then we can divide both sides by b+ 1. But then we have that a = −1, which contradicts that
a 6= −1. Therefore a ∗ b 6= −1, so a ∗ b ∈ S, so ∗ is a binary operation on S.

Now let’s show that ∗ is associative. Suppose a, b, c ∈ S.

(a ∗ b) ∗ c = (ab+ a+ b) ∗ c = (ab+ a+ b)(c) + (ab+ a+ b) + c

= abc+ ac+ bc+ ab+ a+ b+ c

= a(bc+ c+ b) + a+ (bc+ b+ c)

= a(b ∗ c) + a+ (b ∗ c)
= a ∗ (b ∗ c).

Therefore ∗ is associative.
Let’s show that 0 is the identity for S. Let a ∈ S. Then a ∗ 0 = a+ 0 + 0 = a and 0 ∗ a = 0 + 0 + a = a.

Therefore 0 ∗ a = a ∗ 0 = a, so 0 is the identity of S.
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To finish our proof that S is a group, we need to show every element has an inverse. Let a ∈ S. We want
to find an inverse for a, so we want to find a b 6= −1 such that a ∗ b = 0.

a ∗ b = 0

ab+ a+ b = 0

b(a+ 1) = −a

b = − a

a+ 1
.

Since a 6= −1, b exists and a ∗ b = 0, so b = − a

a+ 1
is the inverse of a. Note that b = −1 +

1

a+ 1
6= −1, so

b ∈ S.
We’ve shown that S is a group together with the operation ∗. To show that it is an abelian group we

must prove that ∗ is commutative. Let a, b ∈ S. Then

a ∗ b = ab+ a+ b = ba+ b+ a = b ∗ a,

therefore it is an abelian group.

Problem 4. (Exercise 14)
Given the groups R∗ and Z, let G = R∗×Z. Define a binary operation ◦ on G by (a,m)◦(b, n) = (ab,m+n).
Show that G is a group under this operation.

Solution 4. To turn in.

Problem 5. (Exercise 16)
Give a specific example of some group G and elements g, h ∈ G where (gh)n 6= gnhn.

Solution 5. Consider the group D4 (from Exercise 5). Let g = µ1 and h = µ3 and let n = 2. Then

(gh)2 = (µ1 ◦ µ3)2 = (ρ1)2 = ρ2,

while
g2h2 = (µ2

1) ◦ (µ2
3) = id ◦ id = id.

Since ρ2 6= id, then (gh)2 6= gnhn.

Problem 6. (Exercise 17)
Give an example of three different groups with eight elements. Why are the groups different?

Solution 6. The groups Z8, Z4 × Z2, and Z2 × Z2 × Z2 have 8 elements. Let’s show they are all different.
To show their difference we’ll look at the subgroups they have.

Z8 has only one subgroup with 2 elements, namely {0, 4}, while Z4×Z2 has 3 subgroups with 2 elements:
{(0, 0), (2, 0)}, {(0, 0), (0, 1)}, and {(0, 0), (2, 1)}. On the other hand, Z2 × Z2 × Z2 has 7 subgroups with
2 elements: {(0, 0, 0), (1, 0, 0)}, {(0, 0, 0), (1, 0, 1)}, {(0, 0, 0), (1, 1, 0)}, {(0, 0, 0), (1, 1, 1)}, {(0, 0, 0), (0, 1, 0)},
{(0, 0, 0), (0, 1, 1)}, {(0, 0, 0), (0, 0, 1)}. Since all three groups have a different set of subgroups of order 2,
they can’t be the same group.

Problem 7. (Exercise 24)
Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n for n ∈ Z.

Solution 7. For n = 0, ab0a−1 = aa−1 = e and (aba−1)0 = e too, so they match. Let’s prove it by induction
for n ∈ N. If n = 1, then clearly ab1a−1 = (aba−1)1. Suppose that for some k ≥ 1, then abka−1 = (aba−1)k.
Let’s prove that abk+1a−1 = (aba−1)k+1.

Since (aba−1)k = abka−1, then

(aba−1)k+1 = (aba−1)k(aba−1) = abka−1(aba−1)

= abk(a−1a)ba−1

= abkba−1

= abk+1a−1.
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Therefore the statement is true for all n ∈ N. We’re left with trying to prove the statement for n < 0.
Suppose n = −m where m ∈ N. We want to show ab−ma−1 = (aba−1)−m. Now, (aba−1)−1 = (ab−1a−1),

so (aba−1)−m = (ab−1a−1)m. But since m ∈ N, then (ab−1a−1)m = ab−ma−1. Therefore

(aba−1)−m = ab−ma−1.

So the statement is true for negative numbers as well. Now we’ve shown it for all n ∈ Z.

Problem 8. (Exercise 25)
Let U(n) be the group of units in Zn. If n > 2, prove that there is an element k ∈ U(n) such that k2 = 1
and k 6= 1.

Solution 8. gcd (n, n− 1) = 1, therefore n − 1 ∈ U(n). (n − 1)2 ≡ (−1)2 ≡ 1 mod n. Since n > 2, then
n− 1 > 1, so n− 1 6= 1. Therefore k = n− 1 satisfies the conditions in the problem.

Problem 9. (Exercise 30)
Show that if a2 = e for all elements a in a group G, then G must be abelian.

Solution 9. To turn in.

Problem 10. (Exercise 33)
Find all the subgroups of Z3 × Z3. Use this information to show that Z3 × Z3 is not the same group as Z9.

Solution 10. To turn in.

Problem 11. (Exercise 34)
Find all the subgroups of the symmetry group of an equilateral triangle.

Solution 11. Define id, ρ1, ρ2, µ1, µ2, and µ3 as the 6 symmetries of an equilateral triangle. id is the
identity symmetry, ρ1 is rotating 120◦, ρ2 is rotating 240◦ and µ1, µ2, µ3 are the three possible reflections.
Then the subgroups are:

• {id},

• {id, µ1},

• {id, µ2},

• {id, µ3},

• {id, ρ1, ρ2},

• {id, µ1, µ2, µ3, ρ1, ρ2}.

It is not hard to see that there are no other subgroups. Indeed any subgroup must have id. If you have
ρ1, then you must have ρ2 and viceversa since ρ1 ◦ ρ1 = ρ2 and ρ2 ◦ ρ2 = ρ1. If you have µi and ρj in the
subgroup, then you must have the whole group because ρ1µi 6= ρ2µi, ρ1µi 6= µi, ρ2µi 6= µi and neither of
them is the identity. So you have at least 6 distinct elements: µi, ρ1µi, ρ2µi, id, µi, ρ1, ρ2. But the whole
group of symmetries consists of 6 elements. That means the only subgroups are the subgroups listed.

Problem 12. (Exercise 36)
Let H = {2k : k ∈ Z}. Show that H is a subgroup of Q∗.

Solution 12. To turn in.

Problem 13. (Exercise 37)
Let n = 0, 1, 2, . . . and nZ = {nk : k ∈ Z}. Prove that nZ is a subgroup of Z. Show that these subgroups
are the only subgroups of Z.

Solution 13. First let’s show nZ is a subgroup for any n ∈ N ∪ {0}:
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(a) First let’s show addition is closed on nZ. If a, b ∈ nZ, then there exist k1, k2 ∈ Z such that a = k1n
and b = k2n. Then

a+ b = k1n+ k2n = (k1 + k2)n ∈ nZ.

(b) The identity of Z, 0, is an element of nZ, since 0 = n× 0, so 0 ∈ nZ.

(c) Finally, let’s show that any element of nZ has an inverse. Indeed if a ∈ nZ, then a = k1n for some
integer k1. Then −a = −k1n = (−k1)n ∈ nZ. Therefore the inverse of a is also an element of nZ.

By (a), (b) and (c), nZ is a subgroup of Z with the addition operation.
Now, we want to show that all subgroups of Z are of the form nZ with n ∈ N ∪ {0}. Suppose H ⊆ Z is

a subgroup. If H = {0}, then H = 0Z. Suppose H 6=}0}. By the Well-Ordering principle, there exists a
nonzero element n ∈ H such that |n| is minimal. Since H is a subgroup of Z, then the inverse of n is also in
H, i.e., −n ∈ H. Since n and −n, then we can assume without loss of generality that n is positive. Since H
is a subgroup, then all multiples of n must be in H. This means that nZ ⊆ H. Now suppose that there is
an element m ∈ H such that m 6∈ nZ. By the division algorithm, there exist integers q and r such that:

m = qn+ r,

where 0 ≤ r < n. Since m 6∈ nZ, then r 6= 0. Since m ∈ H and qn ∈ H, then −qn ∈ H, so m − qn ∈ H.
Therefore r ∈ H. But 0 < r < n which implies that |r| < |N |, which contradicts the minimality of |n|. This
means no element m exists. That proves that H = nZ.

Problem 14. (Exercise 40)
Prove that

G = {a+ b
√

2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication.

Solution 14. To turn in.

5


