Homework 3 Solutions

Enrique Treviño

February 13, 2016

1 Chapter 4

Problem 1. (Exercise 1)

Prove or disprove each of the following statements.
(a) \mathbb{Z}_{8}^{\times}is cyclic.
(b) All of the generators of \mathbb{Z}_{60} are prime.
(c) \mathbb{Q} is cyclic.
(d) If every proper subgroup of a group G is cyclic, then G is a cyclic group.
(e) A group with a finite number of subgroups is finite.

Solution 1.

(a) To turn in.
(b) To turn in.
(c) Suppose that \mathbb{Q} is cyclic. Suppose that it has a as its generator. Since $a \in \mathbb{Q}$, then there exist p and q relatively prime integers such that $a=\frac{p}{q}$. Since a is a generator, then any rational number x can be written in the form $k a$ for some integer k. Therefore $x=k p / q$. Therefore $q x$ is an integer, for any rational number x. The rational number $r=\frac{1}{q+1}$ doesn't satisfy that $q r \in \mathbb{Z}$. This contradicts our assumption that \mathbb{Q} is cyclic, so it is not cyclic.
(d) To turn in.
(e) True. This one is hard to prove. Let G be a group with finitely many subgroups. Then in particular, there are finitely many cyclic subgroups of the form $\langle g\rangle$. Now define the following equivalence relation on the set $G: g \sim h$ if $\langle g\rangle=<h>$. The set of equivalence classes partitions G. Since each equivalence class creates a subgroup of G and G has finitely many subgroups, the set of equivalence classes is finite.
For the sake of contradiction assume that G is infinite. Then, by the Pigeonhole principle, at least one of the equivalence classes has infinitely many elements. Suppose the equivalence class with infinitely many elements is $[g]$. Let $g, h \in[g]$ such that $g \neq h$, and $h \neq g^{-1}$. Since $<g>=<h>$, then there exist $k, j \in \mathbb{Z}$ such that $g=h^{k}$ and $h=g^{j}$. Therefore $g=h^{k}=\left(g^{j}\right)^{k}=g^{j k}$. Therefore $g^{j k-1}=e$ (the identity). Now, note that since g and h are not the identity, inverses of each other or equal to each other, then $j k \neq 1$, so $j k-1 \neq 0$. So then $|<g>|\leq|j k-1|$. But if $r \in[g]$, then $r \in<g>$ because $<r>=<g>$ implies $r \in<g>$. Since $[g]$ is infinite, $\langle g>$ should have infinitely many elements, yet $\langle g\rangle$ has finitely many. This contradicts our assumption that G is infinite, proving that G is finite.

Problem 2. (Exercise 2)
Find the order of each of the following elements.
(a) $5 \in \mathbb{Z}_{12}$
(b) $\sqrt{3} \in \mathbb{R}$
(c) $\sqrt{3} \in \mathbb{R}^{*}$
(d) $-i \in \mathbb{C}^{*}$
(e) $72 \in \mathbb{Z}_{240}$.
(f) $312 \in \mathbb{Z}_{471}$.

Solution 2.

(a) To turn in.
(b) To turn in.
(c) To turn in.
(d) $<-i>=\{1,-i,-1, i\}$, so $|<-i>|=4$.
(e) To turn in.
(f) The gcd of 312 and 471 is 3 . Therefore $3 \in\langle 312\rangle$, so the order of 312 is $471 / 3=157$.

Problem 3. (Exercise 3)
List all of the elements in each of the following subgroups.
(a) The subgroup of \mathbb{Z} generated by 7
(b) The subgroup of \mathbb{Z}_{24} generated by 15
(h) The subgroup generated by 5 in \mathbb{Z}_{18}^{\times}

Solution 3. To turn in.
Problem 4. (Exercise 6)
Find the order of every element in the symmetry group of the square, D_{4}.
Solution 4. To turn in.
Problem 5. (Exercise 11)
If $a^{24}=e$ in a group G, what are the possible orders of a ?
Solution 5. Consider the subgroup $<a>$. Suppose the order of $<a>$ is n. Then $a^{k}=e$ if and only if $n \mid k$. Therefore $n \mid 24$. So the possibilities for the order of a are: $1,2,3,4,6,8,12,24$.

Problem 6. (Exercise 23)
Let $a, b \in G$. Prove the following statements.
(a) The order of a is the same as the order of a^{-1}.
(b) For all $g \in G,|a|=\left|g^{-1} a g\right|$.
(c) The order of $a b$ is the same as the order of $b a$.

Solution 6.

(a) To turn in.
(b) Let's first prove it for finite G. Suppose $|a|=n$ and $\left|g^{-1} a g\right|=m$. Then $a^{n}=e$. But

$$
\left(g^{-1} a g\right)^{n}=g^{-1} a^{n} g=g^{-1} e g=e,
$$

so $m \mid n$. Similarly $\left(g^{-1} a g\right)^{m}=e$. But then $g^{-1} a^{m} g=e$. So then $a^{m}=g g^{-1}=e$. Therefore $n \mid m$. Therefore $|a|=\left|g^{-1} a g\right|$.
So the statement is easy to prove when G is finite. What about when G is infinite? When G is infinite but $\langle a\rangle$ and $\left\langle g^{-1} a g\right\rangle$ are finite, one can follow the same proof as above. If $\langle a\rangle$ is finite, then $<g^{-1} a g>$ is also finite because whenever $a^{k}=e$, then $\left(g^{-1} a g\right)^{k}=e$ (as shown above). Similarly, if $\left\langle g^{-1} a g\right\rangle$ is finite $\langle a\rangle$ is also finite. Therefore we're only left with the problem of what happens when both $\langle a\rangle$ and $\left\langle g^{-1} a g\right\rangle$ are infinite.
To prove that a has the same order as $g^{-1} a g$ we need to show that there is a bijection from $\langle a\rangle$ to $\left\langle g^{-1} a g\right\rangle$. Let $f:\langle a\rangle \rightarrow\left\langle g^{-1} a g\right\rangle$ be defined by $f(x)=g^{-1} x g$. Let's show that f is a bijection. First we must show that the image of f is indeed contained in $\left\langle g^{-1} a g\right\rangle$. Let $h \in\langle a\rangle$. Then there exists a $k \in \mathbb{Z}$ such that $a^{k}=h$. Now, $\left(g^{-1} a g\right)^{k}=g^{-1} a^{k} g=f(h)$. Therefore $f(h) \in<g^{-1} a g>$. So f is indeed a function from $\langle a\rangle$ to $\left\langle g^{-1} a g\right\rangle$. Now we need to show f is one-to-one and onto. Suppose $f\left(h_{1}\right)=f\left(h_{2}\right)$. Then there exist integers k_{1} and k_{2} such that $f\left(h_{1}\right)=g^{-1} a^{k_{1}} g$ and $f\left(h_{2}\right)=g^{-1} a^{k_{2}} g$. Therefore $g^{-1} a^{k_{1}} g=g^{-1} a^{k_{2}} g$. So $a^{k_{1}-k_{2}}=e$. Since $\langle a\rangle$ is infinite, then $k_{1}=k_{2}$. Therefore f is one-to-one.
Now let's prove that f is onto. Let $h \in<g^{-1} a g>$. Then $h=\left(g^{-1} a g\right)^{k}$ for some $k \in \mathbb{Z}$. Therefore $h=g^{-1} a^{k} g=f\left(a^{k}\right)$. Since $a^{k} \in\langle a\rangle$ and $f\left(a^{k}\right)=h$, then f is onto.
Since f is a bijection, the order of $\langle a\rangle$ is equal to the order of $\left\langle g^{-1} a g\right\rangle$.
Alternative Solution: The proof above is not the easiest when $\langle a\rangle$ and $\left.<g^{-1} a g\right\rangle$ are both infinite. So let's give another proof for this case: If $\langle a\rangle$ is infinite, $|a|=|\mathbb{N}|$ because $\langle a\rangle=\left\{a^{k}\right.$: $k \in \mathbb{Z}\}$ has at most \mathbb{Z} elements and $|\mathbb{Z}|=|\mathbb{N}|$. Similarly $\left|\left\langle g^{-1} a g\right\rangle\right|=|\mathbb{N}|$. So the orders are the same.
(c) To turn in.

Problem 7. (Exercise 26)
Prove that \mathbb{Z}_{p} has no nontrivial proper subgroups if p is prime.
Solution 7. $\mathbb{Z}_{p}=<1>$. Suppose H is a nontrivial subgroup of \mathbb{Z}_{p}. Since \mathbb{Z}_{p} is cyclic, H must be cyclic. Suppose $H=\langle b\rangle$. But $b=b \cdot 1$. Therefore the order of b is $\frac{p}{g c d(b, p)}=\frac{p}{1}=p$. But then H is \mathbb{Z}_{p}. So the only subgroups of \mathbb{Z}_{p} are $\{0\}$ and \mathbb{Z}_{p}.

Problem 8. (Exercise 31)
Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is called the torsion subgroup of G.

Solution 8. To turn in.

