Homework 3 Solutions

Enrique Treviño

February 13, 2016

1 Chapter 4

Problem 1. (Exercise 1)

Prove or disprove each of the following statements.

- (a) \mathbb{Z}_8^{\times} is cyclic.
- (b) All of the generators of \mathbb{Z}_{60} are prime.
- (c) \mathbb{Q} is cyclic.
- (d) If every proper subgroup of a group G is cyclic, then G is a cyclic group.
- (e) A group with a finite number of subgroups is finite.

Solution 1.

- (a) To turn in.
- (b) To turn in.
- (c) Suppose that \mathbb{Q} is cyclic. Suppose that it has a as its generator. Since $a \in \mathbb{Q}$, then there exist p and q relatively prime integers such that $a = \frac{p}{q}$. Since a is a generator, then any rational number x can be written in the form ka for some integer k. Therefore x = kp/q. Therefore qx is an integer, for any rational number x. The rational number $r = \frac{1}{q+1}$ doesn't satisfy that $qr \in \mathbb{Z}$. This contradicts our assumption that \mathbb{Q} is cyclic, so it is not cyclic.
- (d) To turn in.
- (e) True. This one is hard to prove. Let G be a group with finitely many subgroups. Then in particular, there are finitely many cyclic subgroups of the form $\langle g \rangle$. Now define the following equivalence relation on the set G: $g \sim h$ if $\langle g \rangle = \langle h \rangle$. The set of equivalence classes partitions G. Since each equivalence class creates a subgroup of G and G has finitely many subgroups, the set of equivalence classes is finite.

For the sake of contradiction assume that G is infinite. Then, by the Pigeonhole principle, at least one of the equivalence classes has infinitely many elements. Suppose the equivalence class with infinitely many elements is [g]. Let $g, h \in [g]$ such that $g \neq h$, and $h \neq g^{-1}$. Since $\langle g \rangle = \langle h \rangle$, then there exist $k, j \in \mathbb{Z}$ such that $g = h^k$ and $h = g^j$. Therefore $g = h^k = (g^j)^k = g^{jk}$. Therefore $g^{jk-1} = e$ (the identity). Now, note that since g and h are not the identity, inverses of each other or equal to each other, then $jk \neq 1$, so $jk - 1 \neq 0$. So then $|\langle g \rangle | \leq |jk - 1|$. But if $r \in [g]$, then $r \in \langle g \rangle$ because $\langle r \rangle = \langle g \rangle$ implies $r \in \langle g \rangle$. Since [g] is infinite, $\langle g \rangle$ should have infinitely many elements, yet $\langle g \rangle$ has finitely many. This contradicts our assumption that G is infinite, proving that G is finite.

Problem 2. (Exercise 2)

Find the order of each of the following elements.

(a) $5 \in \mathbb{Z}_{12}$

- (b) $\sqrt{3} \in \mathbb{R}$
- (c) $\sqrt{3} \in \mathbb{R}^*$
- (d) $-i \in \mathbb{C}^*$
- (e) $72 \in \mathbb{Z}_{240}$.
- (f) $312 \in \mathbb{Z}_{471}$.

Solution 2.

- (a) To turn in.
- (b) To turn in.
- (c) To turn in.
- (d) $\langle -i \rangle = \{1, -i, -1, i\}$, so $|\langle -i \rangle| = 4$.
- (e) To turn in.
- (f) The gcd of 312 and 471 is 3. Therefore $3 \in \langle 312 \rangle$, so the order of 312 is 471/3 = 157.

Problem 3. (Exercise 3)

List all of the elements in each of the following subgroups.

- (a) The subgroup of \mathbb{Z} generated by 7
- (b) The subgroup of \mathbb{Z}_{24} generated by 15
- (h) The subgroup generated by 5 in \mathbb{Z}_{18}^{\times}

Solution 3. To turn in.

Problem 4. (Exercise 6) Find the order of every element in the symmetry group of the square, D_4 .

Solution 4. To turn in.

Problem 5. (Exercise 11) If $a^{24} = e$ in a group *G*, what are the possible orders of *a*?

Solution 5. Consider the subgroup $\langle a \rangle$. Suppose the order of $\langle a \rangle$ is n. Then $a^k = e$ if and only if $n \mid k$. Therefore $n \mid 24$. So the possibilities for the order of a are: 1, 2, 3, 4, 6, 8, 12, 24.

Problem 6. (Exercise 23)

Let $a, b \in G$. Prove the following statements.

- (a) The order of a is the same as the order of a^{-1} .
- (b) For all $g \in G$, $|a| = |g^{-1}ag|$.
- (c) The order of *ab* is the same as the order of *ba*.

Solution 6.

(a) To turn in.

(b) Let's first prove it for finite G. Suppose |a| = n and $|g^{-1}ag| = m$. Then $a^n = e$. But

$$(g^{-1}ag)^n = g^{-1}a^ng = g^{-1}eg = e,$$

so $m \mid n$. Similarly $(g^{-1}ag)^m = e$. But then $g^{-1}a^mg = e$. So then $a^m = gg^{-1} = e$. Therefore n|m. Therefore $|a| = |g^{-1}ag|$.

So the statement is easy to prove when G is finite. What about when G is infinite? When G is infinite but $\langle a \rangle$ and $\langle g^{-1}ag \rangle$ are finite, one can follow the same proof as above. If $\langle a \rangle$ is finite, then $\langle g^{-1}ag \rangle$ is also finite because whenever $a^k = e$, then $(g^{-1}ag)^k = e$ (as shown above). Similarly, if $\langle g^{-1}ag \rangle$ is finite $\langle a \rangle$ is also finite. Therefore we're only left with the problem of what happens when both $\langle a \rangle$ and $\langle g^{-1}ag \rangle$ are infinite.

To prove that a has the same order as $g^{-1}ag$ we need to show that there is a bijection from $\langle a \rangle$ to $\langle g^{-1}ag \rangle$. Let $f :\langle a \rangle \rightarrow \langle g^{-1}ag \rangle$ be defined by $f(x) = g^{-1}xg$. Let's show that f is a bijection. First we must show that the image of f is indeed contained in $\langle g^{-1}ag \rangle$. Let $h \in \langle a \rangle$. Then there exists a $k \in \mathbb{Z}$ such that $a^k = h$. Now, $(g^{-1}ag)^k = g^{-1}a^kg = f(h)$. Therefore $f(h) \in \langle g^{-1}ag \rangle$. So f is indeed a function from $\langle a \rangle$ to $\langle g^{-1}ag \rangle$. Now we need to show f is one-to-one and onto. Suppose $f(h_1) = f(h_2)$. Then there exist integers k_1 and k_2 such that $f(h_1) = g^{-1}a^{k_1}g$ and $f(h_2) = g^{-1}a^{k_2}g$. Therefore $g^{-1}a^{k_1}g = g^{-1}a^{k_2}g$. So $a^{k_1-k_2} = e$. Since $\langle a \rangle$ is infinite, then $k_1 = k_2$. Therefore f is one-to-one.

Now let's prove that f is onto. Let $h \in \langle g^{-1}ag \rangle$. Then $h = (g^{-1}ag)^k$ for some $k \in \mathbb{Z}$. Therefore $h = g^{-1}a^kg = f(a^k)$. Since $a^k \in \langle a \rangle$ and $f(a^k) = h$, then f is onto.

Since f is a bijection, the order of $\langle a \rangle$ is equal to the order of $\langle g^{-1}ag \rangle$.

Alternative Solution: The proof above is not the easiest when $\langle a \rangle$ and $\langle g^{-1}ag \rangle$ are both infinite. So let's give another proof for this case: If $\langle a \rangle$ is infinite, $|a| = |\mathbb{N}|$ because $\langle a \rangle = \{a^k : k \in \mathbb{Z}\}$ has at most \mathbb{Z} elements and $|\mathbb{Z}| = |\mathbb{N}|$. Similarly $|\langle g^{-1}ag \rangle| = |\mathbb{N}|$. So the orders are the same.

(c) To turn in.

Problem 7. (Exercise 26)

Prove that \mathbb{Z}_p has no nontrivial proper subgroups if p is prime.

Solution 7. $\mathbb{Z}_p = \langle 1 \rangle$. Suppose *H* is a nontrivial subgroup of \mathbb{Z}_p . Since \mathbb{Z}_p is cyclic, *H* must be cyclic. Suppose $H = \langle b \rangle$. But $b = b \cdot 1$. Therefore the order of *b* is $\frac{p}{gcd(b,p)} = \frac{p}{1} = p$. But then *H* is \mathbb{Z}_p . So the only subgroups of \mathbb{Z}_p are $\{0\}$ and \mathbb{Z}_p .

Problem 8. (Exercise 31)

Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is called the **torsion subgroup** of G.

Solution 8. To turn in.