Homework 4 Solutions

Enrique Treviño

October 3, 2014

1 Chapter 5

Problem 1. (Exercise 1)
Write the following permutations in cycle notation.
(a)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 5 & 3
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 1 & 3
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 4 & 2
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{array}\right)
$$

Solution 1.

(a) (12453).
(b) To turn in.
(c) $(13)(25)$.
(d) To turn in.

Problem 2. (Exercise 2)
Compute each of the following.
(a) $(1345)(234)$
(b) $(12)(1253)$
(c) $(143)(23)(24)$
(d) $(1423)(34)(56)(1324)$
(e) $(1254)(13)(25)$
(g) $(1254)^{-1}(123)(45)(1254)$
(n) $(12537)^{-1}$

Solution 2.

(a) $(1345)(234)=(135)(24)$.
(b) To turn in.
(c) $(143)(23)(24)=(14)(23)$.
(d) To turn in.
(e) $(1254)(13)(25)=(1324)$.
(g) $(1254)^{-1}(123)(45)(1254)=(4521)(123)(45)(1254)=(134)(25)$.
(n) $(12537)^{-1}=(73521)=(35217)=(21735)=(17352)$.

Problem 3. (Exercise 3)
Express the following permutations as products of transpositions and identify them as even or odd.
(a) (14356)
(b) $(156)(234)$
(c) $(1426)(142)$
(d) $(17254)(1423)(154632)$

Solution 3.

(a) $(14356)=(16)(15)(13)(14)$. The permutation is even.
(b) To turn in.
(c) $(1426)(142)=(16)(12)(14)(12)(14)$. The permutation is odd.
(d) To turn in.

Problem 4. (Exercise 7)
Find all possible orders of elements in S_{7} and A_{7}.
Solution 4. To turn in.
Problem 5. (Exercise 8)
Show that A_{10} contains an element of order 15.
Solution 5. Let $\sigma=(12345)(678)$. Since $\sigma=(15)(14)(13)(12)(68)(67), \sigma$ is an even permutation, so $\sigma \in A_{10}$. Now, let's show that σ has order 15. Since (12345) and (678) are disjoint, then they commute, so $\sigma^{n}=(12345)^{n}(678)^{n}$ for all integers n. Since (12345) is a cycle with 5 elements $(12345)^{n}=i d$ if and only if $5 \mid n$. Similarly, $(678)^{n}=i d$ if and only if $3 \mid n$. Therefore $\sigma^{n}=i d$ if and only if $15 \mid n$. Therefore the order of σ is 15 .

Problem 6. (Exercise 13)
Let $\sigma=\sigma_{1} \cdots \sigma_{m} \in S_{n}$ be the product of disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_{1}, \ldots, \sigma_{m}$.

Solution 6. To turn in.
Problem 7. (Exercise 17)
Prove that S_{n} is nonabelian for $n \geq 3$.
Solution 7. Since $n \geq 3$, then $\sigma=(12)$ and $\tau=(13)$ are both in S_{n}. Now, $\sigma \circ \tau=(12)(13)=(132)$ while $\tau \circ \sigma=(13)(12)=(123)$. Since $(132) \neq(123)$, then $\sigma \tau \neq \tau \sigma$, so S_{n} is nonabelian.

Problem 8. (Exercise 27)
Let G be a group and define a map $\lambda_{g}: G \rightarrow G$ by $\lambda_{g}(a)=g a$. Prove that λ_{g} is a permutation of G.

Solution 8. A function f is a permutation of G, if $f: G \rightarrow G$ and f is a bijection. λ_{g} is a function from G to G, so to prove that it is a permutation, we must prove λ_{g} is a bijection.

Let's start by proving λ_{g} is one-to-one. Suppose $g_{1}, g_{2} \in G$ and $\lambda_{g}\left(g_{1}\right)=\lambda_{g}\left(g_{2}\right)$. Then $g g_{1}=g g_{2}$. By left-cancellation, we can conclude that $g_{1}=g_{2}$. Therefore λ_{g} is one-to-one.

Now let's prove that λ_{g} is onto. Suppose $h \in G$. Then $g^{-1} h \in G$ since G is a group and $\lambda_{g}\left(g^{-1} h\right)=$ $g\left(g^{-1} h\right)=h$. So λ_{g} is onto.

Since λ_{g} is a bijection, λ_{g} is a permutation of G.
Problem 9. (Exercise 30)
Let $\tau=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a cycle of length k.
(a) Prove that if σ is any permutation, then

$$
\sigma \tau \sigma^{-1}=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)
$$

is a cycle of length k.
(b) Let μ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1}=\mu$.

Solution 9.

(a) By multiplying by σ on the right, we can see that (a) is true if and only if

$$
\sigma \tau=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma .
$$

So let's prove this:
If $x \notin\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, then $\sigma \tau(x)=\sigma(x)$ because $\tau(x)=x$. On the other hand $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma(x)=$ $\sigma(x)$, because the cycle $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)$ only acts on elements of the form $\sigma\left(a_{i}\right)$ and fixes everything else. Since $x \notin\left\{a_{1}, \ldots, a_{k}\right\}$, then the cycle fixes $\sigma(x)$. So when $x \notin\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$,

$$
\sigma \tau(x)=\sigma(x)=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma(x)
$$

If $x \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, then $x=a_{i}$ for some $i \in\{1,2, \ldots, k\}$. If $i \neq k$, then $\tau\left(a_{i}\right)=a_{i+1}$ so $\sigma \tau(x)=\sigma \tau\left(a_{i}\right)=\sigma\left(a_{i+1}\right)$ and $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma\left(a_{i}\right)=\sigma\left(a_{i+1}\right)$. If $i=k$, then $\tau\left(a_{k}\right)=a_{1}$, so $\sigma \tau\left(a_{k}\right)=\sigma\left(a_{1}\right)$ and $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma\left(a_{k}\right)=\sigma\left(a_{1}\right)$.
Therefore $\sigma \tau(x)=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \sigma(x)$ for all x, hence the two functions are the same.
(b) Suppose $\mu=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$. Now let σ be the permutation that satisfies $\sigma\left(a_{i}\right)=b_{i}$ and $\sigma(x)=x$ otherwise. Then by (a),

$$
\sigma \tau \sigma^{-1}=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)=\left(b_{1}, b_{2}, \ldots, b_{k}\right)=\mu
$$

Problem 10. (Exercise 33)
Let $\alpha \in S_{n}$ for $n \geq 3$. If $\alpha \beta=\beta \alpha$ for all $\beta \in S_{n}$, prove that α must be the identity permutation; hence, the center of S_{n} is the trivial subgroup.

Solution 10. To turn in.

