Homework 5 Solutions

Enrique Treviño

February 26, 2016

1 Chapter 5

Problem 1. (Exercise 1)

Suppose that G is a finite group with an element g of order 5 and an element h of order 7. Why must $|G| \ge 35$?

Solution 1. Let |G| = n. Since $\langle g \rangle$ is a subset of G, then $|g| \mid n$. Therefore $5 \mid n$. Similarly $|h| \mid n$, so $7 \mid n$. Since $5 \mid n$ and $7 \mid n$, then $35 \mid n$. Since n is a positive integer, then $n \geq 35$.

Problem 2. (Exercise 3)

Prove or disprove: Every subgroup of the integers has finite index.

Solution 2. To turn in.

Problem 3. (Exercise 5)

List the left cosets of the subgroups in each of the following.

- (a) $\langle 8 \rangle$ in \mathbb{Z}_{24}
- (b) $\langle 3 \rangle$ in U(8)
- (c) $3\mathbb{Z}$ in \mathbb{Z}
- (d) A_4 in S_4
- (e) A_n in S_n
- (f) D_4 in S_4

Solution 3.

- (a) The cosets are: $\{0, 8, 16\}, \{1, 9, 17\}, \{2, 10, 18\}, \{3, 11, 19\}, \{4, 12, 20\}, \{5, 13, 21\}, \{6, 14, 22\}, \{7, 15, 23\}.$
- (b) To turn in.
- (c) One coset is $H=3\mathbb{Z}$. Since $1\not\in 3\mathbb{Z}$, then 1H is a different coset. $1H=\{3n+1|n\in\mathbb{Z}\}$, (i.e., $1H=\{1,4,7,10,13,\ldots\}\cup\{-2,-5,-8,\ldots\}$). Since $2\not\in (H\cup 1H)$, then 2H is a different coset. $2H=\{3n+2\mid n\in\mathbb{Z}\}$, i.e., $2H=\{2,5,8,11,\ldots\}\cup\{-1,-4,-7,\ldots\}$. Since these three cosets partition \mathbb{Z} , there are no more cosets.
- (d) To turn in.
- (e) If $n \geq 2$, then A_n is half the size of S_n , so $[S_n : A_n] = 2$. Therefore there are only two cosets. One coset is A_n and the other coset is what is left, i.e., the other coset is $S_n \setminus A_n = \{\sigma \in S_n \mid \sigma \notin A_n\} = \{\sigma \in S_n \mid \sigma \text{ is an odd permutation }\}$. So one coset is the even permutations and the other is the odd permutations.

If n = 1, then $A_1 = S_1$, so the only coset is A_1 .

(f) To turn in.

Problem 4. (Exercise 8)

Use Fermat's Little Theorem to show that if p=4n+3 is prime, there is no solution to the equation $x^2\equiv -1$ \pmod{p} .

Solution 4. Let $G = \mathbb{Z}_p^{\times}$, i.e., G is the multiplicative group modulo p. Suppose $x^2 \equiv -1 \pmod{p}$. Then $x \not\equiv 0 \pmod{p}$, therefore $x \in G$.

Since $x^2 \equiv -1 \pmod{p}$, then $x^4 \equiv 1 \pmod{p}$. If $x \equiv 1 \pmod{p}$, then $x^2 \equiv 1 \pmod{p}$. Then $1 \equiv -1$ \pmod{p} , so $2 \equiv 0 \pmod{p}$, so p = 2. But since p = 4n + 3, $p \neq 2$. Therefore $x \not\equiv 1 \pmod{p}$. Since $x \not\equiv 1$ \pmod{p} and $x^2 \not\equiv 1 \pmod{p}$ and $x^4 \equiv 1 \pmod{p}$, then the order of x in G is 4. By Langrange's theorem $4 \mid |G|$. But the order of G is p-1=4n+2. 4n+2 is not a multiple of 4, therefore we've reached a contradiction. Therefore no $x \in G$ satisfies $x^2 \equiv -1 \pmod{p}$.

Solution using Fermat's little theorem: Above I included a solution using group theory. Now, let's just use Fermat's little theorem.

Suppose that $x^2 \equiv -1 \pmod{p}$. Then $x \not\equiv 0 \pmod{p}$, therefore by Fermat's little theorem $x^{p-1} \equiv 1$ \pmod{p} . Therefore

 $x^{p-1} \equiv x^{4n+2} \equiv (x^2)^{2n+1} \equiv (-1)^{2n+1} \equiv -1 \pmod{p}.$

Therefore $1 \equiv -1 \pmod{p}$, so $2 \equiv 0 \pmod{p}$, so $p \mid 2$, so p = 2. Since $p \neq 2$, then there is no solution to the equation $x^2 \equiv -1 \pmod{p}$.

Problem 5. (Exercise 11)

Let H be a subgroup of a group G and suppose that $q_1, q_2 \in G$. Prove that the following conditions are equivalent.

- (a) $g_1 H = g_2 H$
- (b) $Hg_1^{-1} = Hg_2^{-1}$
- (c) $g_1H \subseteq g_2H$
- (d) $g_2 \in g_1 H$
- (e) $g_1^{-1}g_2 \in H$

Solution 5. I will include the proof that (b) implies (d). To turn in you have to prove (a) implies (c).

Suppose $Hg_1^{-1} = Hg_2^{-1}$. We want to show $g_2 \in g_1H$. Since $e \in H$ and $g_1^{-1} = eg_1^{-1}$, then $g_1^{-1} \in Hg_1^{-1}$. Since $Hg_1^{-1} = Hg_2^{-1}$, then $g_1^{-1} \in Hg_2^{-1}$. Therefore there exists $h \in H$ such that $g_1^{-1} = hg_2^{-1}$. Therefore

$$g_1(g_1^{-1})g_2 = g_1(hg_2^{-1})g_2$$

 $g_2 = g_1h.$

Therefore $g_2 \in g_1H$. This proves that $Hg_1^{-1} = Hh_2^{-1}$ implies $g_2 \in g_1H$. Now let's prove the reverse direction.

Suppose $g_2 \in g_1H$. Then there exists an $h \in H$ such that $g_2 = g_1h$. Therefore $g_1^{-1}g_2 = h$, so $g_1^{-1} = hg_2^{-1}$. We want to prove that $Hg_1^{-1} = Hg_2^{-1}$. Let $x \in Hg_1^{-1}$. Then there exists $h' \in H$ such that $x = h'g_1^{-1}$. So $x = h'(hg_2^{-1}) = (h'h)g_2^{-1}$. Since $h'h \in H$ because H is a subgroup of G, then $h'hg_2^{-1} \in Hg_2^{-1}$, so $x \in Hg_2^{-1}$. Therefore $Hg_1^{-1} \subseteq Hg_2^{-1}$.

Now, suppose that $x \in Hg_2^{-1}$. Therefore there exists $h'' \in H$ such that $x = h''g_2^{-1}$. Since $g_2 = g_1h$, then $g_2^{-1} = h^{-1}g_1^{-1}$. Therefore $x = h''h^{-1}g_1^{-1}$. Since $h''h^{-1} \in H$, then $x \in Hg_1^{-1}$. Therefore $Hg_2^{-1} \subseteq Hg_2^{-1}$. This proper that f(x) = f(x)

This proves that (b) and (d) are equivalent.

Problem 6. (Exercise 17)

Suppose that [G:H]=2. If a and b are not in H, show that $ab \in H$.

Solution 6. To turn in.

Problem 7. (Exercise 18)

If [G:H]=2, prove that gH=Hg.

Solution 7. To turn in.

Problem 8. (Exercise 22)

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, where p_1, p_2, \dots, p_k are distinct primes. Prove that

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

Solution 8. Let's prove that $\phi(mn) = \phi(m)\phi(n)$ if $\gcd(m,n) = 1$. Let $a \leq m$ be relatively prime to m. Now consider $\{a, a+m, a+2m, \ldots, a+(n-1)m\}$. All of these numbers are relatively prime to m because a is relatively prime to m and m|km. If we look modulo n, then since m and n are relatively prime $\{a, a+m, a+2m, \ldots, a+(n-1)m\} \equiv \{0, 1, 2, \ldots, n-1\} \pmod{n}$ (in a different order). Therefore there are $\phi(n)$ numbers relatively prime to n in $\{a, a+m, a+2m, \ldots, a+(n-1)m\}$. Since there are $\phi(m)$ possibilities for a and for each a there are $\phi(n)$ numbers $\leq mn$ relatively prime to m and n, then there are $\phi(m)\phi(n)$ numbers relatively prime to mn, so $\phi(mn) = \phi(m)\phi(n)$.

Now let's calculate $\phi(p^k)$. Among the numbers $1,2,3,\ldots,p^k$ the only numbers relatively prime to p^k are $p,2p,3p,\ldots,p^{k-1}p$. Therefore $\phi(p^k)=p^k-p^{k-1}=p^k\left(1-\frac{1}{p}\right)$. Since ϕ satisfies that $\phi(ab)=\phi(a)\phi(b)$ whenever $\gcd(a,b)=1$, then if $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, we have:

$$\begin{split} \phi(n) &= \phi(p_1^{e_1}) \phi(p_2^{e_2}) \cdots \phi(p_k^{e_k}) \\ &= p_1^{e_1} \left(1 - \frac{1}{p_1} \right) p_2^{e_2} \left(1 - \frac{1}{p_2} \right) \cdots p_k^{e_k} \left(1 - \frac{1}{p_k} \right) \\ &= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right). \end{split}$$

Alternative Solution: Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Consider the following sets:

- $A_{p_1} = \{m \le n : p_1 | m\},$
- $A_{p_2} = \{m \le n : p_2 | m\},$
- ...,
- $A_{n_k} = \{m < n : p_k | m\}.$

If $gcd(m,n) \neq 1$, then m is divisible by p_i for some i, so $m \in A_{p_i}$. Therefore

$$\phi(n) = n - |A_{p_1} \cup A_{p_2} \cup \cdots \cup A_{p_k}|.$$

Now

$$|A_{p_{i_1}} \cap A_{p_{i_2}} \cap \cdots A_{p_{i_r}}| = \frac{n}{p_{i_1} p_{i_2} \cdots p_{i_r}}.$$

Therefore by inclusion-exclusion:

$$\phi(n) = n - |A_{p_1}| - \dots - |A_{p_k}| + |A_{p_1} \cap A_{p_2}| + \dots + (-1)^r |A_{p_{i_1}} \cap A_{p_{i_2}} \cap \dots A_{p_{i_r}}| + \dots + (-1)^k |A_{p_1} \cap \dots A_{p_k}|$$

$$= n - \frac{n}{p_1} - \frac{n}{p_2} - \dots - \frac{n}{p_k} + \frac{n}{p_1 p_2} + \dots + (-1)^r \frac{n}{p_{i_1} p_{i_2} \cdots p_{i_r}} + \dots + \frac{n}{p_1 p_2 \cdots p_k}$$

$$= n \left(1 - \frac{1}{p_1} - \frac{1}{p_2} - \dots - \frac{1}{p_k} + \frac{1}{p_1 p_2} + \dots + (-1)^r \frac{1}{p_{i_1} p_{i_2} \cdots p_{i_r}} + \dots + (-1)^k \frac{1}{p_1 p_2 \cdots p_k} \right)$$

$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right).$$

Problem 9. (Exercise 23)

Show that

$$n = \sum_{d|n} \phi(d)$$

for all positive integers n.

Solution 9. Let $m \in \{1, 2, 3, ..., n\}$. Let $\gcd(m, n) = d$. Then m = dm' and n = dn' where $\gcd(m', n') = 1$ and $m' \le n'$. Note that n' = n/d and that d|n. Now consider all numbers m such that $\gcd(m, n) = d$. The numbers satisfy that m/d is relatively prime with n/d and less than or equal to n/d. Also, as long as those requirements are satisfied, then (m, n) = d. Therefore there are

$$\phi\left(\frac{n}{d}\right)$$

numbers m satisfying that gcd(m,n) = d whenever d|n. Since every number $m \in \{1,2,3...,n\}$ has a gcd with n that divides n, then if for each d|n we count all numbers that have $gcd\ d$ with n, we get n. This is because we are partitioning the set $\{1,2,...,n\}$ into the gcd that each number has with n. Therefore

$$\sum_{d|n} \phi\left(\frac{n}{d}\right) = n.$$

But if d|n, then $\frac{n}{d}|n$ as well, so

$$\sum_{d|n} \phi\left(\frac{n}{d}\right) = \sum_{d|n} \phi(d).$$

The conclusion follows.

Alternative phrasing of the solution:

Consider the relation \sim on the set $\{1, 2, 3, \ldots, n\}$, where $a \sim b$ if $\gcd(a, n) = \gcd(b, n)$. It is not hard to show that \sim is an equivalence relation. Therefore \sim partitions the set $\{1, 2, 3, \ldots, n\}$. Let C_d be the equivalence class of the number d. Then $C_d = \{m \leq n : \gcd(m, n) = d\}$. $C_d = \emptyset$ whenever $d \nmid n$, therefore C_d partitions $\{1, 2, 3, \ldots, n\}$ whenever d ranges over the divisors of n. Therefore

$$n = \sum_{d|n} |C_d|.$$

As proven above

$$|C_d| = \phi\left(\frac{n}{d}\right).$$

The proof concludes the same way as the original proof.

One more solution:

Let

$$g(n) = \sum_{d|n} \phi(d).$$

Our goal is to show that g(n) = n. We will prove that g is multiplicative, i.e., that if $\gcd(a,b) = 1$, then g(ab) = g(a)g(b). Let d|ab. We're going to need to prove that there exist unique $d_1|a$ and $d_2|b$ such that $d = d_1d_2$. Let $d_1 = \gcd(a,d)$ and $d_2 = \gcd(b,d)$. Then d_1 and d_2 are unique. Now let's show that $d_1d_2 = d$. Since $d_1 = \gcd(a,d)$, then $1 = \gcd\left(\frac{a}{d_1},\frac{d}{d_1}\right)$. Now $\frac{d}{d_1}|\frac{ab}{d_1}$ and $\frac{d}{d_1}$ is relatively prime so by Exercise 27 in

Chapter 2 (done in HW 1), then $\frac{d}{d_1}|b$. Since a and b are relatively prime, then $\gcd\left(\frac{d}{d_1},b\right)=\gcd(d,b)=d_2$. But since $\frac{d}{d_1}|b$, then $\gcd\left(\frac{d}{d_1},b\right)=\frac{d}{d_1}$. Therefore $\frac{d}{d_1}=d_2$. Therefore $d=d_1d_2$.

Okay, so we have proven that if d|ab and gcd(a,b) = 1, then there exist unique $d_1|a$ and $d_2|b$. Therefore

$$g(ab) = \sum_{\substack{d|ab}} \phi(d) = \sum_{\substack{d_1|a\\d_2|b}} \phi(d_1d_2) = \sum_{\substack{d_1|a\\d_2|b}} \sum_{\substack{d_2|b}} \phi(d_1d_2).$$

Now, since $\gcd(a,b)=1$ and $d_1|a$ and $d_2|b$, then $\gcd(d_1,d_2)=1$. Since $\phi(ab)=\phi(a)\phi(b)$ whenever $\gcd(a,b)=1$, then $\phi(d_1d_2)=\phi(d_1)\phi(d_2)$. Therefore

$$g(ab) = \sum_{d_1|a} \sum_{d_2|b} \phi(d_1 d_2) = \sum_{d_1|a} \sum_{d_2|b} \phi(d_1)\phi(d_2) = \left(\sum_{d_1|a} \phi(d_1)\right) \left(\sum_{d_2|b} \phi(d_2)\right) = g(a)g(b).$$

Now,

$$g(p^k) = \sum_{d|p^k} \phi(d) = \phi(1) + \phi(p) + \phi(p^2) + \dots + \phi(p^k)$$

$$= 1 + p\left(1 - \frac{1}{p}\right) + p^2\left(1 - \frac{1}{p}\right) + \dots + p^k\left(1 - \frac{1}{p}\right)$$

$$= 1 + p\left(1 - \frac{1}{p}\right)\left(1 + p + p^2 + \dots + p^{k-1}\right)$$

$$= 1 + (p-1)\left(\frac{p^k - 1}{p - 1}\right) = 1 + (p^k - 1) = p^k.$$

Since $g(p^k) = p^k$ and g(ab) = g(a)g(b) whenever gcd(a,b) = 1, then g(n) = n. The proof is complete.