Homework 6 Solutions

Enrique Treviño

October 17, 2014

1 Chapter 9

Problem 1. (Exercise 1)
Prove that $\mathbb{Z} \cong n \mathbb{Z}$ for $n \neq 0$.
Solution 1. To turn in.
Problem 2. (Exercise 3)
Prove or disprove: $\mathbb{Z}_{8}^{\times} \cong \mathbb{Z}_{4}$.
Solution 2. \mathbb{Z}_{4} is cyclic, yet \mathbb{Z}_{8}^{\times}is not cyclic. Therefore they are not isomorphic.
Problem 3. (Exercise 5)
Show that \mathbb{Z}_{5}^{\times}is isomorphic to \mathbb{Z}_{10}^{\times}, but \mathbb{Z}_{12}^{\times}is not.
Solution 3. $\langle 2\rangle=\{2,4,3,1\}=\mathbb{Z}_{5}^{\times}$, so \mathbb{Z}_{5}^{\times}is cyclic of order 4 . $\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}=\{3,9,7,1\}=\langle 3\rangle$ is also cyclic of order 4 . Therefore they are both isomorphic to \mathbb{Z}_{4}, so they are isomorphic to each other. \mathbb{Z}_{12}^{\times}is not cyclic since all of its non-identity elements have order 2

Alternative Solution: Let $\phi: \mathbb{Z}_{5}^{\times} \rightarrow \mathbb{Z}_{10}^{\times}$be defined by $\phi(1)=1, \phi(2)=3, \phi(4)=9, \phi(3)=7$. Then ϕ is a bijection. We can then verify that $\phi(a b \bmod 5)=\phi(a) \phi(b) \bmod 10$ by checking all 16 possible pairs $a, b \in\{1,2,3,4\}$.

An alternative proof that \mathbb{Z}_{12}^{\times}is not isomorphic to \mathbb{Z}_{5}^{\times}is the following: Suppose that $\phi: \mathbb{Z}_{5}^{\times} \rightarrow \mathbb{Z}_{12}^{\times}$is an isomorphism. Let $\phi(2)=a$. Then $\phi(4)=a^{2}, \phi(3)=a^{3}$ and $\phi(1)=a^{4}=1$. Then a, a^{2}, a^{3} and 1 are all different. Yet $a^{2}=1$ for any $a \in \mathbb{Z}_{12}^{\times}$. Therefore no isomorphism exists.

Problem 4. (Exercise 8)
Prove that \mathbb{Q} is not isomorphic to \mathbb{Z}.
Solution 4. To turn in.
Problem 5. (Exercise 11)
Find five non-isomorphic groups of order 8 (prove that they are non-isomorphic).
Solution 5. Four easy groups to find are $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{4}$. D_{4} is non-abelian so it clearly is different from the rest. \mathbb{Z}_{8} is the only cyclic group so that makes it different from the rest. $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ has an element of order 4 since $|(1,0)|=4$, yet every nontrivial element of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has order 2 . Therefore they are different.

The last group of order 8 is a special group that took Hamilton many years to find. The group is called the quaternion group and it has the following representation:

$$
Q=\{1, i, j, k,-i,-j,-k,-1\},
$$

with the operations $i^{2}=j^{2}=k^{2}=i j k=-1$ and $(-1)^{2}=1.1$ is the identity and -1 commutes with all elements.

With these operations we can deduce the rest of the operations. For example $i j k=-1$ and $k^{2}=-1$ therefore $i j k^{2}=(-1)(k)$, so $-i j=-k$, so $i j=k$. Also, $(i j)(j i)=i\left(j^{2}\right) i=i(-i)=-i^{2}=1$. So $j i$ is the
inverse of $i j$. Since $i j=k$, then $j i=-k$. We can also find $i k$. Indeed $k=i j$, so $i k=i(i j)=-j$. With similar reasoning we can find all of them and form the Cayley table:

\times	1	i	j	k	$-i$	$-j$	$-k$	-1
1	1	i	j	k	-1	$-j$	$-k$	-1
i	i	-1	k	$-j$	1	$-k$	j	$-i$
j	j	$-k$	-1	i	k	1	$-i$	$-j$
k	k	j	$-i$	-1	$-j$	i	1	$-k$
$-i$	$-i$	1	$-k$	j	-1	k	$-j$	i
$-j$	$-j$	k	1	$-i$	$-k$	-1	i	j
$-k$	$-k$	$-j$	i	1	j	$-i$	-1	k
-1	-1	$-i$	$-j$	$-k$	i	j	k	1

Note that $i j=k$ and $j i=-k$, therefore Q is non-abelian. Therefore if it's isomorphic to any of the others it can only be isomorphic to D_{4}. It is not isomorphic to D_{4} because D_{4} only has 2 elements of order 4 (r and r^{3}) where as Q has 6 elements of order $4(i, j, k,-i,-j,-k)$. Indeed if we suppose an isomorphism $\phi: D_{4} \rightarrow Q$ exists, then if $a \in D_{4}$ has order n, then $\phi(a) \in Q$ has order n (that is because $\phi\left(a^{k}\right)=\phi(a)^{k}$, so $a^{k}=i d \Leftrightarrow n \mid k$ and $\phi\left(a^{k}\right)=i d \Leftrightarrow a^{k}=i d \Leftrightarrow n \mid k$. Since $\phi\left(a^{k}\right)=\phi(a)^{k}$, then a and $\phi(a)$ have the same orders in their respective groups. In particular that implies that D_{4} has the same number of elements of order 4 as Q. But this is not true. Therefore $D_{4} \not \neq Q$. Therefore we have 5 non-isomorphic groups of order 8 .

Problem 6. (Exercise 16)
Find the order of each of the following elements.
(a) $(3,4)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$
(b) $(6,15,4)$ in $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{24}$
(c) $(5,10,15)$ in $\mathbb{Z}_{25} \times \mathbb{Z}_{25} \times \mathbb{Z}_{25}$
(d) $(8,8,8)$ in $\mathbb{Z}_{10} \times \mathbb{Z}_{24} \times \mathbb{Z}_{80}$

Solution 6.

(a) The order of 3 in \mathbb{Z}_{4} is 4 and the order of 4 in \mathbb{Z}_{6} is 3 . Therefore the order of $(3,4)=l c m(4,3)=12$.
(b) To turn in.
(c) The orders of 5,10 and 15 in \mathbb{Z}_{25} are 5,5 and 5 respectively. Therefore the order of $(5,10,15)$ is $\operatorname{lcm}(5,5,5)=5$.
(d) To turn in.

Problem 7. (Exercise 17)
Prove that D_{4} cannot be the internal direct product of two of its proper subgroups.
Solution 7. To turn in.
Problem 8. (Exercise 22)
Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5 respectively such that $h k=k h$ for all $h \in H$ and $k \in K$, prove that G is the internal direct product of H and K.

Solution 8. To be able to prove this statement we need to prove that $G=H K$ and that $H \cap K=\{e\}$. Let's start by proving that $H \cap K=\{e\}$. Suppose $x \in H \cap K$. Then $x \in H$ so $x^{4}=e$ and $x \in K$ so $x^{5}=e$. Since $x^{4}=e$, then $x^{5}=x^{4} x=x$. Since $x^{5}=e$ and $x^{5}=x$, then $x=e$. Therefore $H \cap K=\{e\}$.

Now let's show that $H K=G . H$ has 4 elements and K has 5 elements so there are 20 possible elements of the form $h k$ with $h \in H$ and $k \in K$. Since H and K are subsets of G, all of these $h k$ are elements of G. Since G has 20 elements, if all of the $h k$'s are different, then $H K=G$. The only way we fail to
show $H K=G$ is if we have $h_{1} k_{1}=h_{2} k_{2}$ with either $h_{1} \neq h_{2}$ or $k_{1} \neq k_{2}$. So suppose $h_{1} k_{1}=h_{2} k_{2}$. Then $h_{2}^{-1} h_{1} k_{1}=k_{2}$, so

$$
h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}
$$

Therefore $h_{2}^{-1} h_{1} \in H \cap K$ and $k_{2} k_{1}^{-1} \in H \cap K$. Since $H \cap K=\{e\}$, then $h_{2}^{-1} h_{1}=e$ and $k_{2} k_{1}^{-1}=e$. Therefore $h_{1}=h_{2}$ and $k_{1}=k_{2}$. That means that all of the $h k$'s are different so $G=H K$. Therefore $G \cong H \times K$.

Problem 9. (Exercise 23)
Prove or disprove the following assertion. Let G, H, and K be groups. If $G \times K \cong H \times K$, then $G \cong H$.
Solution 9. To turn in.
Problem 10. (Exercise 33)
Write out the permutations associated with each element of S_{3} in the proof of Cayley's Theorem.
Solution 10. To turn in.

