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Problem 1. (Exercise 1)
Prove that Z ∼= nZ for n 6= 0.

Solution 1. To turn in.

Problem 2. (Exercise 3)
Prove or disprove: Z×

8
∼= Z4.

Solution 2. Z4 is cyclic, yet Z×
8 is not cyclic. Therefore they are not isomorphic.

Problem 3. (Exercise 5)
Show that Z×

5 is isomorphic to Z×
10, but Z×

12 is not.

Solution 3. 〈2〉 = {2, 4, 3, 1} = Z×
5 , so Z×

5 is cyclic of order 4. Z×
10 = {1, 3, 7, 9} = {3, 9, 7, 1} = 〈3〉 is also

cyclic of order 4. Therefore they are both isomorphic to Z4, so they are isomorphic to each other. Z×
12 is not

cyclic since all of its non-identity elements have order 2
Alternative Solution: Let φ : Z×

5 → Z×
10 be defined by φ(1) = 1, φ(2) = 3, φ(4) = 9, φ(3) = 7. Then

φ is a bijection. We can then verify that φ(ab mod 5) = φ(a)φ(b) mod 10 by checking all 16 possible pairs
a, b ∈ {1, 2, 3, 4}.

An alternative proof that Z×
12 is not isomorphic to Z×

5 is the following: Suppose that φ : Z×
5 → Z×

12 is
an isomorphism. Let φ(2) = a. Then φ(4) = a2, φ(3) = a3 and φ(1) = a4 = 1. Then a, a2, a3 and 1 are all
different. Yet a2 = 1 for any a ∈ Z×

12. Therefore no isomorphism exists.

Problem 4. (Exercise 8)
Prove that Q is not isomorphic to Z.

Solution 4. To turn in.

Problem 5. (Exercise 11)
Find five non-isomorphic groups of order 8 (prove that they are non-isomorphic).

Solution 5. Four easy groups to find are Z8,Z4 × Z2,Z2 × Z2 × Z2, D4. D4 is non-abelian so it clearly is
different from the rest. Z8 is the only cyclic group so that makes it different from the rest. Z4 × Z2 has an
element of order 4 since |(1, 0)| = 4, yet every nontrivial element of Z2×Z2×Z2 has order 2. Therefore they
are different.

The last group of order 8 is a special group that took Hamilton many years to find. The group is called
the quaternion group and it has the following representation:

Q = {1, i, j, k,−i,−j,−k,−1},

with the operations i2 = j2 = k2 = ijk = −1 and (−1)2 = 1. 1 is the identity and −1 commutes with all
elements.

With these operations we can deduce the rest of the operations. For example ijk = −1 and k2 = −1
therefore ijk2 = (−1)(k), so −ij = −k, so ij = k. Also, (ij)(ji) = i(j2)i = i(−i) = −i2 = 1. So ji is the
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inverse of ij. Since ij = k, then ji = −k. We can also find ik. Indeed k = ij, so ik = i(ij) = −j. With
similar reasoning we can find all of them and form the Cayley table:

× 1 i j k −i −j −k −1
1 1 i j k −1 −j −k −1
i i −1 k −j 1 −k j −i
j j −k −1 i k 1 −i −j
k k j −i −1 −j i 1 −k
−i −i 1 −k j −1 k −j i
−j −j k 1 −i −k −1 i j
−k −k −j i 1 j −i −1 k
−1 −1 −i −j −k i j k 1

Note that ij = k and ji = −k, therefore Q is non-abelian. Therefore if it’s isomorphic to any of the others
it can only be isomorphic to D4. It is not isomorphic to D4 because D4 only has 2 elements of order 4
(r and r3) where as Q has 6 elements of order 4(i, j, k,−i,−j,−k). Indeed if we suppose an isomorphism
φ : D4 → Q exists, then if a ∈ D4 has order n, then φ(a) ∈ Q has order n (that is because φ(ak) = φ(a)k, so
ak = id⇔ n|k and φ(ak) = id⇔ ak = id⇔ n|k. Since φ(ak) = φ(a)k, then a and φ(a) have the same orders
in their respective groups. In particular that implies that D4 has the same number of elements of order 4 as
Q. But this is not true. Therefore D4 6∼= Q. Therefore we have 5 non-isomorphic groups of order 8.

Problem 6. (Exercise 16)
Find the order of each of the following elements.

(a) (3, 4) in Z4 × Z6

(b) (6, 15, 4) in Z30 × Z45 × Z24

(c) (5, 10, 15) in Z25 × Z25 × Z25

(d) (8, 8, 8) in Z10 × Z24 × Z80

Solution 6.

(a) The order of 3 in Z4 is 4 and the order of 4 in Z6 is 3. Therefore the order of (3, 4) = lcm(4, 3) = 12.

(b) To turn in.

(c) The orders of 5, 10 and 15 in Z25 are 5, 5 and 5 respectively. Therefore the order of (5, 10, 15) is
lcm(5, 5, 5) = 5.

(d) To turn in.

Problem 7. (Exercise 17)
Prove that D4 cannot be the internal direct product of two of its proper subgroups.

Solution 7. To turn in.

Problem 8. (Exercise 22)
Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5 respectively such that hk = kh
for all h ∈ H and k ∈ K, prove that G is the internal direct product of H and K.

Solution 8. To be able to prove this statement we need to prove that G = HK and that H ∩ K = {e}.
Let’s start by proving that H ∩K = {e}. Suppose x ∈ H ∩K. Then x ∈ H so x4 = e and x ∈ K so x5 = e.
Since x4 = e, then x5 = x4x = x. Since x5 = e and x5 = x, then x = e. Therefore H ∩K = {e}.

Now let’s show that HK = G. H has 4 elements and K has 5 elements so there are 20 possible elements
of the form hk with h ∈ H and k ∈ K. Since H and K are subsets of G, all of these hk are elements
of G. Since G has 20 elements, if all of the hk’s are different, then HK = G. The only way we fail to
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show HK = G is if we have h1k1 = h2k2 with either h1 6= h2 or k1 6= k2. So suppose h1k1 = h2k2. Then
h−1
2 h1k1 = k2, so

h−1
2 h1 = k2k

−1
1 .

Therefore h−1
2 h1 ∈ H∩K and k2k

−1
1 ∈ H∩K. Since H∩K = {e}, then h−1

2 h1 = e and k2k
−1
1 = e. Therefore

h1 = h2 and k1 = k2. That means that all of the hk’s are different so G = HK. Therefore G ∼= H ×K.

Problem 9. (Exercise 23)
Prove or disprove the following assertion. Let G, H, and K be groups. If G×K ∼= H ×K, then G ∼= H.

Solution 9. To turn in.

Problem 10. (Exercise 33)
Write out the permutations associated with each element of S3 in the proof of Cayley’s Theorem.

Solution 10. To turn in.
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