Homework 6 Solutions

Enrique Treviño

October 17, 2014

1 Chapter 9

Problem 1. (Exercise 1) Prove that $\mathbb{Z} \cong n\mathbb{Z}$ for $n \neq 0$.

Solution 1. To turn in.

Problem 2. (Exercise 3) Prove or disprove: $\mathbb{Z}_8^{\times} \cong \mathbb{Z}_4$.

Solution 2. \mathbb{Z}_4 is cyclic, yet \mathbb{Z}_8^{\times} is not cyclic. Therefore they are not isomorphic.

Problem 3. (Exercise 5) Show that \mathbb{Z}_5^{\times} is isomorphic to \mathbb{Z}_{10}^{\times} , but \mathbb{Z}_{12}^{\times} is not.

Solution 3. $\langle 2 \rangle = \{2, 4, 3, 1\} = \mathbb{Z}_5^{\times}$, so \mathbb{Z}_5^{\times} is cyclic of order 4. $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\} = \{3, 9, 7, 1\} = \langle 3 \rangle$ is also cyclic of order 4. Therefore they are both isomorphic to \mathbb{Z}_4 , so they are isomorphic to each other. \mathbb{Z}_{12}^{\times} is not cyclic since all of its non-identity elements have order 2

Alternative Solution: Let $\phi : \mathbb{Z}_5^{\times} \to \mathbb{Z}_{10}^{\times}$ be defined by $\phi(1) = 1$, $\phi(2) = 3$, $\phi(4) = 9$, $\phi(3) = 7$. Then ϕ is a bijection. We can then verify that $\phi(ab \mod 5) = \phi(a)\phi(b) \mod 10$ by checking all 16 possible pairs $a, b \in \{1, 2, 3, 4\}$.

An alternative proof that \mathbb{Z}_{12}^{\times} is not isomorphic to \mathbb{Z}_5^{\times} is the following: Suppose that $\phi : \mathbb{Z}_5^{\times} \to \mathbb{Z}_{12}^{\times}$ is an isomorphism. Let $\phi(2) = a$. Then $\phi(4) = a^2$, $\phi(3) = a^3$ and $\phi(1) = a^4 = 1$. Then a, a^2, a^3 and 1 are all different. Yet $a^2 = 1$ for any $a \in \mathbb{Z}_{12}^{\times}$. Therefore no isomorphism exists.

Problem 4. (Exercise 8) Prove that \mathbb{Q} is not isomorphic to \mathbb{Z} .

Solution 4. To turn in.

Problem 5. (Exercise 11)

Find five non-isomorphic groups of order 8 (prove that they are non-isomorphic).

Solution 5. Four easy groups to find are \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4 . D_4 is non-abelian so it clearly is different from the rest. \mathbb{Z}_8 is the only cyclic group so that makes it different from the rest. $\mathbb{Z}_4 \times \mathbb{Z}_2$ has an element of order 4 since |(1,0)| = 4, yet every nontrivial element of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ has order 2. Therefore they are different.

The last group of order 8 is a special group that took Hamilton many years to find. The group is called the quaternion group and it has the following representation:

$$Q = \{1, i, j, k, -i, -j, -k, -1\},\$$

with the operations $i^2 = j^2 = k^2 = ijk = -1$ and $(-1)^2 = 1$. 1 is the identity and -1 commutes with all elements.

With these operations we can deduce the rest of the operations. For example ijk = -1 and $k^2 = -1$ therefore $ijk^2 = (-1)(k)$, so -ij = -k, so ij = k. Also, $(ij)(ji) = i(j^2)i = i(-i) = -i^2 = 1$. So ji is the

inverse of ij. Since ij = k, then ji = -k. We can also find ik. Indeed k = ij, so ik = i(ij) = -j. With similar reasoning we can find all of them and form the Cayley table:

×	1	i	j	k	-i	-j	-k	$^{-1}$
1	1	i	j	k	-1	-j	-k	-1
i	i	-1	k	-j	1	-k	j	-i
j	j	-k	-1	i	k	1	-i	-j
k	k	j	-i	-1	-j	i	1	-k
-i	-i	1	-k	j	-1	k	-j	i
							i	
-k	-k	-j	i	1	j	-i	-1	k
							k	

Note that ij = k and ji = -k, therefore Q is non-abelian. Therefore if it's isomorphic to any of the others it can only be isomorphic to D_4 . It is not isomorphic to D_4 because D_4 only has 2 elements of order 4 $(r \text{ and } r^3)$ where as Q has 6 elements of order 4(i, j, k, -i, -j, -k). Indeed if we suppose an isomorphism $\phi: D_4 \to Q$ exists, then if $a \in D_4$ has order n, then $\phi(a) \in Q$ has order n (that is because $\phi(a^k) = \phi(a)^k$, so $a^k = id \Leftrightarrow n | k \text{ and } \phi(a^k) = id \Leftrightarrow a^k = id \Leftrightarrow n | k$. Since $\phi(a^k) = \phi(a)^k$, then a and $\phi(a)$ have the same orders in their respective groups. In particular that implies that D_4 has the same number of elements of order 4 as Q. But this is not true. Therefore $D_4 \not\cong Q$. Therefore we have 5 non-isomorphic groups of order 8.

Problem 6. (Exercise 16)

Find the order of each of the following elements.

- (a) (3,4) in $\mathbb{Z}_4 \times \mathbb{Z}_6$
- (b) (6, 15, 4) in $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{24}$
- (c) (5, 10, 15) in $\mathbb{Z}_{25} \times \mathbb{Z}_{25} \times \mathbb{Z}_{25}$
- (d) (8, 8, 8) in $\mathbb{Z}_{10} \times \mathbb{Z}_{24} \times \mathbb{Z}_{80}$

Solution 6.

- (a) The order of 3 in \mathbb{Z}_4 is 4 and the order of 4 in \mathbb{Z}_6 is 3. Therefore the order of (3,4) = lcm(4,3) = 12.
- (b) To turn in.
- (c) The orders of 5, 10 and 15 in \mathbb{Z}_{25} are 5, 5 and 5 respectively. Therefore the order of (5, 10, 15) is lcm(5,5,5) = 5.
- (d) To turn in.

Problem 7. (Exercise 17)

Prove that D_4 cannot be the internal direct product of two of its proper subgroups.

Solution 7. To turn in.

Problem 8. (Exercise 22)

Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5 respectively such that hk = kh for all $h \in H$ and $k \in K$, prove that G is the internal direct product of H and K.

Solution 8. To be able to prove this statement we need to prove that G = HK and that $H \cap K = \{e\}$. Let's start by proving that $H \cap K = \{e\}$. Suppose $x \in H \cap K$. Then $x \in H$ so $x^4 = e$ and $x \in K$ so $x^5 = e$. Since $x^4 = e$, then $x^5 = x^4x = x$. Since $x^5 = e$ and $x^5 = x$, then x = e. Therefore $H \cap K = \{e\}$.

Now let's show that HK = G. H has 4 elements and K has 5 elements so there are 20 possible elements of the form hk with $h \in H$ and $k \in K$. Since H and K are subsets of G, all of these hk are elements of G. Since G has 20 elements, if all of the hk's are different, then HK = G. The only way we fail to show HK = G is if we have $h_1k_1 = h_2k_2$ with either $h_1 \neq h_2$ or $k_1 \neq k_2$. So suppose $h_1k_1 = h_2k_2$. Then $h_2^{-1}h_1k_1 = k_2$, so

$$h_2^{-1}h_1 = k_2k_1^{-1}.$$

Therefore $h_2^{-1}h_1 \in H \cap K$ and $k_2k_1^{-1} \in H \cap K$. Since $H \cap K = \{e\}$, then $h_2^{-1}h_1 = e$ and $k_2k_1^{-1} = e$. Therefore $h_1 = h_2$ and $k_1 = k_2$. That means that all of the hk's are different so G = HK. Therefore $G \cong H \times K$.

Problem 9. (Exercise 23)

Prove or disprove the following assertion. Let G, H, and K be groups. If $G \times K \cong H \times K$, then $G \cong H$.

Solution 9. To turn in.

Problem 10. (Exercise 33)

Write out the permutations associated with each element of S_3 in the proof of Cayley's Theorem.

Solution 10. To turn in.