Homework 7 Solutions

Enrique Treviño

November 6, 2014

1 Chapter 10

Problem 1. (Exercise 1)

For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.

- (a) $G = S_4$ and $H = A_4$
- (b) $G = A_5$ and $H = \{(1), (123), (132)\}$
- (c) $G = S_4$ and $H = D_4$
- (d) $G = Q_8$ and $H = \{1, -1, I, -I\}$
- (e) $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$

Solution 1.

(a) Since $[S_4 : A_4] = 2$, then the two cosets are A_4 and B_4 (set of odd permutations). Then if $\sigma \in A_4$, then $\sigma A_4 = A_4 = A_4 \sigma$. If $\sigma \notin A_4$, then $\sigma A_4 \neq A_4$, so $\sigma A_4 = B_4$. Similarly $A_4 \sigma \neq A_4$, so $A_4 \sigma = B_4$. Therefore $\sigma A_4 = A_4 \sigma$. Therefore A_4 is a normal subgroup of S_4 . The Cayley table is pretty simple:

- (b) To turn in.
- (c) To turn in.
- (d) As a reminder

$$Q_8 = \{1, -1, i, j, k, -i, -j, -k\}$$

with $i^2 = j^2 = k^2 = ijk = -1$. We will show $H \leq Q_8$ by showing that if $g \in Q_8$ and $h \in H$, then $ghg^{-1} \in H$. First note that if $g \in H$, then since H is a subgroup, then $ghg^{-1} \in H$. So we can assume $g \notin H$. We also know $g1g^{-1} = 1$ and $g(-1)g^{-1} = -1$. It's also easy to see that $g(-i)g^{-1} = -gig^{-1}$. So we need only show that if $g \notin H$ and h = i, then $ghg^{-1} \in H$. We have four cases: (we will use that ij = k since ijk = -1 and $k^2 = -1$, jk = i since ijk = -1 and $i^2 = -1$. Also the inverse of g is -g for any $1 \neq g \in Q_8$)

1.
$$g = j$$
. Then $gig^{-1} = jij^{-1} = ji(-j) = -(jij) = -jk = -i \in H$.
2. $g = -j$. Then $gig^{-1} = (-j)i(-j)^{-1} = (-j)i(j) = -(jij) = -jk = -i \in H$.
3. $g = k$. Then $gig^{-1} = kik^{-1} = ki(-k) = -(kik) = -kj = i \in H$.
4. $g = -k$. Then $gig^{-1} = (-k)i(-k)^{-1} = (-k)i(k) = -(kik) = -kj = i \in H$.

Therefore $H \leq Q_8$.

One could also prove it as in part a, by using that the index of H in Q_8 is 2. Now the Cayley table of G/H:

(e) To turn in.

Problem 2. (Exercise 2)

Find all the subgroups of D_4 . Which subgroups are normal? What are all the factor groups of D_4 up to isomorphism?

Solution 2. To turn in.

Problem 3. (Exercise 5)

Show that the intersection of two normal subgroups is a normal subgroup.

Solution 3. Let N_1 and N_2 be normal subgroups of G. Let $N = N_1 \cap N_2$. Let's show that $N \leq G$. We will prove it by showing that $gng^{-1} \in N$ for any $g \in G$ and $n \in N$. Indeed, let $g \in G$ and $n \in N$. Since $n \in N_1 \cap N_2$, then $n \in N_1$. Since N_1 is normal, then $gng^{-1} \in N_1$. Therefore $gng^{-1} \in N_1$. But also $n \in N_2$ and N_2 is normal, so $gng^{-1} \in N_2$. Therefore $gng^{-1} \in N_1$ and $gng^{-1} \in N_2$, so $gng^{-1} \in N_1 \cap N_2 = N$. So $N \leq G$.

Problem 4. (Exercise 9) Prove or disprove: If H and G/H are cyclic, then G is cyclic.

Solution 4. To turn in.

Problem 5. (Exercise 10)

Let H be a subgroup of index 2 of a group G. Prove that H must be a normal subgroup of G. Conclude that S_n is not simple for $n \ge 3$.

Solution 5. To turn in.

Problem 6. (Exercise 11)

If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Solution 6. To turn in.

Problem 7. (Exercise 13)

Recall that the **center** of a group G is the set

$$Z(G) = \{ x \in G : xg = gx \text{ for all } g \in G \}.$$

- (a) Calculate the center of S_3 .
- (b) Calculate the center of $GL_2(\mathbb{R})$.
- (c) Show that the center of any group G is a normal subgroup of G.
- (d) If G/Z(G) is cyclic, show that G is abelian.

Solution 7.

(a) To turn in.

(b) We want to find all invertible matrices M that satisfy AM = MA for any invertible matrix A. Let

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

Now since M commutes with all elements of $GL_2(\mathbb{R})$, then in particular, it commutes with

$$J = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right).$$

Therefore

$$JM = \left(\begin{array}{cc} c & d \\ a & b \end{array}\right) = MJ = \left(\begin{array}{cc} b & a \\ d & c \end{array}\right).$$

Therefore a = d and b = d. Therefore M is of the form

$$M = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right).$$

Now, M should also commute with

$$K = \left(\begin{array}{rrr} 1 & 1\\ 1 & 0 \end{array}\right)$$

 \mathbf{SO}

$$KM = \begin{pmatrix} (a+b) & (a+b) \\ a & b \end{pmatrix} = MK = \begin{pmatrix} (a+b) & a \\ (a+b) & b \end{pmatrix}.$$

Therefore a + b = a, so b = 0. Therefore

$$M = \left(\begin{array}{cc} a & 0\\ 0 & a \end{array}\right).$$

And indeed if

$$\left(\begin{array}{cc} x & y \\ z & w \end{array}\right) \in GL_2(\mathbb{R}),$$

then

$$\left(\begin{array}{cc} x & y \\ z & w \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) = \left(\begin{array}{cc} ax & ay \\ az & aw \end{array}\right),$$

and

$$\left(\begin{array}{cc}a&0\\0&a\end{array}\right)\left(\begin{array}{cc}x&y\\z&w\end{array}\right) = \left(\begin{array}{cc}ax&ay\\az&aw\end{array}\right)$$

So M commutes with every element of $GL_2(\mathbb{R})$, so M is in the center. Yet every element in the center must be of this form. Therefore

$$Z(GL_2(\mathbb{R})) = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \mid a \neq 0 \right\}$$

- (c) To turn in.
- (d) Suppose that G/Z(G) is cyclic. Then $G/Z(G) = \langle gZ(G) \rangle$ for some $g \in G$. Let $g_1, g_2 \in G$. We want to show that $g_1g_2 = g_2g_1$ (to show G is abelian). Since $G/Z(G) = \langle gZ(G) \rangle$, then $g_1Z(G) = g^{k_1}Z(G)$ for some integer k_1 and $g_2Z(G) = g_2^{k_2}Z(G)$ for some integer k_2 . Then $g_1 \in g^{k_1}Z(G)$, so there exists an $x \in Z(G)$ such that $g_1 = g^{k_1}x$. Similarly, there exists a $y \in Z(G)$ such that $g_2 = g^{k_2}y$. Therefore

$$g_1g_2 = (g^{k_1}x)(g^{k_2}y) = (xg^{k_1})(g^{k_2}y) = x(g^{k_1+k_2})y = xyg^{k_1+k_2}.$$

We used that x and y commute with any element of G. Similarly:

$$g_2g_1 = (g^{k_2}y)(g^{k_1}x) = (yg^{k_2})(g^{k_1}x) = y(g^{k_2+k_1})x = yxg^{k_1+k_2} = xyg^{k_1+k_2}.$$

Therefore $g_1g_2 = g_2g_1$.