Homework 8 Solutions

Enrique Treviño

April 5, 2016

1 Chapter 11

Problem 1. (Exercise 4)

Let $\phi : \mathbb{Z} \to \mathbb{Z}$ be given by $\phi(n) = 7n$. Prove that ϕ is a group homomorphism. Find the kernel and the image of ϕ .

Solution 1. To turn in.

Problem 2. (Exercise 5)

Describe all of the homomorphisms from \mathbb{Z}_{24} to \mathbb{Z}_{18} .

Solution 2. Let ϕ be a homomorphism from \mathbb{Z}_{24} to \mathbb{Z}_{18} . Suppose $\phi(1) = k$ for some $k \in \mathbb{Z}_{18}$. Then since ϕ is a homomorphism $\phi(m) = m\phi(1) = mk$. So $\phi(1)$ determines $\phi(m)$ for all $m \in \mathbb{Z}_{24}$. Now since $24 \equiv 0 \mod 24$, then $24k = \phi(24) = \phi(0) = 0$. But that means $24k \equiv 0 \mod 18$. Therefore $8k \equiv 0 \mod 6$. Therefore $4k \equiv 0 \mod 3$. Therefore $k \equiv 0 \mod 3$. So the only options are k = 0, 3, 6, 9, 12, 15. Each of one of these gives a homomorphism.

So the homomorphisms are $\phi(m) = mk \mod 18$ for each k = 0, 3, 6, 9, 12, 15. Let's write out the case k = 3 to show that homomorphism. The others are built similarly:

$\phi(0) = 0,$	$\phi(1) = 3,$	$\phi(2) = 6,$	$\phi(3) = 9,$	$\phi(4) = 12,$	$\phi(5) = 15,$
$\phi(6) = 0,$	$\phi(7) = 3,$	$\phi(8) = 6,$	$\phi(9) = 9,$	$\phi(10) = 12,$	$\phi(11) = 15,$
$\phi(12) = 0,$	$\phi(13) = 3,$	$\phi(14) = 6,$	$\phi(15) = 9,$	$\phi(16) = 12,$	$\phi(17) = 15,$
$\phi(18) = 0,$	$\phi(19) = 3,$	$\phi(20) = 6,$	$\phi(21) = 9,$	$\phi(22) = 12,$	$\phi(23) = 15.$

Problem 3. (Exercise 6)

Describe all of the homomorphisms from \mathbb{Z} to \mathbb{Z}_{12} .

Solution 3. To turn in.

Problem 4. (Exercise 7)

In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $N = \langle 6 \rangle$.

- (a) List the elements in HN (we usually write H + N for these additive groups) and $H \cap N$.
- (b) List the cosets in HN/N, showing the elements in each coset.
- (c) List the cosets in $H/(H \cap N)$, showing the elements in each coset.
- (d) Give the correspondence between HN/N and $H/(H \cap N)$ described in the proof of the Second Isomorphism Theorem.

Solution 4. To turn in.

Problem 5. (Exercise 9)

If $\phi: G \to H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ is also abelian.

Solution 5. Suppose that $\phi(g_1), \phi(g_2) \in \phi(G)$. Since $g_1, g_2 \in G$ and G is abelian, then $g_1g_2 = g_2g_1$. Therefore

$$\phi(g_1)\phi(g_2) = \phi(g_1g_2) = \phi(g_2g_1) = \phi(g_2)\phi(g_1).$$

Therefore $\phi(G)$ is abelian.

Problem 6. (Exercise 10) If $\phi: G \to H$ is a group homomorphism and G is cyclic, prove that $\phi(G)$ is also cyclic.

Solution 6. To turn in.

Problem 7. (Exercise 11)

Show that a homomorphism defined on a cyclic group is completely determined by its action on the generator of the group.

Solution 7. Suppose $\phi : G \to H$ is a group homomorphism and that $G = \langle g \rangle$ is cyclic. Let $\phi(g) = h$ for some $h \in H$. Since ϕ is a group homomorphism then $\phi(g^k) = \phi(g)^k = h^k$. Now if $g' \in G$, then $g' = g^k$ for some integer k. Then

$$\phi(g') = \phi(g^k) = \phi(g)^k = h^k.$$

Therefore the homomorphism is determined by the action on the generator since every other value can be written in terms of the value on the generator.

Problem 8. (Exercise 12)

Let G be a group of order p^2 , where p is a prime number. If H is a subgroup of G of order p, show that H is normal in G. Prove that G must be abelian.

Solution 8. To turn in.

Problem 9. (Exercise 17)

If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

Solution 9. To turn in.