Homework 9 Solutions

Enrique Treviño

April 15, 2016

1 Chapter 14

Problem 1. (Exercise 2)
Compute all X_{g} and all G_{x} for each of the following permutation groups.
(a) $X=\{1,2,3\}$,
$G=S_{3}=\{(1),(12),(13),(23),(123),(132)\}$
(b) $X=\{1,2,3,4,5,6\}$,
$G=\{(1),(12),(345),(354),(12)(345),(12)(354)\}$
Solution 1. To turn in.

Problem 2. (Exercise 3)

Compute the G-equivalence classes of X for each of the G-sets in the previous Exercise. For each $x \in X$ verify that $|G|=\left|\mathcal{O}_{x}\right| \cdot\left|G_{x}\right|$.

Solution 2. To turn in.
Problem 3. (Exercise 4)
Let G be the additive group of real numbers. Let the action of $\theta \in G$ on the real plane \mathbb{R}^{2} be given by rotating the plane counterclockwise about the origin through θ radians. Let P be a point on the plane other than the origin.
(a) Show that \mathbb{R}^{2} is a G-set.
(b) Describe geometrically the orbit containing P.
(c) Find the group G_{P}.

Solution 3. To turn in.
Problem 4. (Exercise 5)
Let $G=A_{4}$ and suppose that G acts on itself by conjugation; that is, $(g, h) \mapsto g h g^{-1}$.
(a) Determine the conjugacy classes (orbits) of each element of G.
(b) Determine all of the isotropy subgroups for each element of G.

Solution 4. To turn in.
Problem 5. (Exercise 6)
Find the conjugacy classes and the class equation for each of the following groups.
(a) S_{4}
(b) D_{5}
(c) \mathbb{Z}_{9}
(d) Q_{8}

Solution 5.

(a)

$$
\begin{gathered}
S_{4}=\{(1),(12),(13),(14),(23),(24),(34),(123),(132),(124),(142),(134),(143),(234),(243), \\
(12)(34),(13)(24),(14)(23),(1234),(1243),(1324),(1342),(1423),(1432)\} . \\
Z\left(S_{4}\right)=\{(1)\} .
\end{gathered}
$$

We know that if $\sigma \in S_{4}$, then $\sigma(12) \sigma^{-1}=(\sigma(1), \sigma(2))$, so that makes it easier to calculate the conjugacy class of (12). For example

$$
(1342)(12)(1342)^{-1}=((1342)(1),(1342)(2))=(31)=(13) .
$$

The orbit of (12) is

$$
O_{(12)}=\{(12),(23),(24),(13),(14),(34)\} .
$$

It turned out to be all transpositions. The orbit of (123) is

$$
O_{(123)}=\{(123),(132),(124),(142),(134),(143),(234),(243)\} .
$$

The orbit of (12)(34) is

$$
O_{(12)(34)}=\{(12)(34),(13)(24),(14)(23)\} .
$$

There is one more conjugacy class:

$$
O_{(1234)}=\{(1234),(1243),(1324),(1342),(1423),(1432)\} .
$$

The conjugacy classes break out in cycle types.

$$
\left|S_{4}\right|=24, \quad|Z(G)|=1, \quad\left|O_{(12)}\right|=6, \quad\left|O_{(123)}\right|=8, \quad\left|O_{(12)(34)}\right|=3, \quad\left|O_{(1234)}=6\right|,
$$

so

$$
24=1+6+8+3+6 \text {. }
$$

(b) To turn in.
(c) To turn in.
(d)

$$
Q_{8}=\{1, i, j, k,-1,-i,-j,-k\},
$$

where $i^{2}=j^{2}=k^{2}=i j k=-1$. Let's use the Cayley table to help us find the conjugacy classes:

\times	1	i	j	k	$-i$	$-j$	$-k$	-1
1	1	i	j	k	-1	$-j$	$-k$	-1
i	i	-1	k	$-j$	1	$-k$	j	$-i$
j	j	$-k$	-1	i	k	1	$-i$	$-j$
k	k	j	$-i$	-1	$-j$	i	1	$-k$
$-i$	$-i$	1	$-k$	j	-1	k	$-j$	i
$-j$	$-j$	k	1	$-i$	$-k$	-1	i	j
$-k$	$-k$	$-j$	i	1	j	$-i$	-1	k
-1	-1	$-i$	$-j$	$-k$	i	j	k	1

Since the first row equals the first column $1 \in Z\left(Q_{8}\right)$. Since the last row equals the last column, then $-1 \in Z\left(Q_{8}\right)$. Every other row is not equal to its corresponding column, so the center contains just 1 and -1 . Therefore

$$
Z\left(Q_{8}\right)=\{1,-1\} .
$$

Now let's find the conjugacy class containing i. Let's compute an example: $j i j^{-1}=-j i j=-j k=-i$, so $-i$ is in the conjugacy class of i. If we compute $x i x^{-1}$ for all $x \in Q_{8}$, we get the following set:

$$
O_{i}=\{i,-i\}
$$

Since i, j, k are symmetric, then

$$
\begin{aligned}
O_{j} & =\{j,-j\} \\
O_{k} & =\{k,-k\} .
\end{aligned}
$$

So the conjugacy classes are $\{i,-i\},\{j,-j\},\{k,-k\}$ and the center is $\{1,-1\}$. The class equation looks like

$$
8=2+2+2+2
$$

Problem 6. (Exercise 20)
A group acts faithfully on a G-set X if the identity is the only element of G that leaves every element of X fixed. Show that G acts faithfully on X if and only if no two distinct elements of G have the same action on each element of X.

Solution 6. Let

$$
G_{X}=\{g \in G \mid g \cdot x=x \forall x \in X\}
$$

A group action from G to X is faithful when $G_{X}=\{1\}$.
Let's begin by proving the (\Rightarrow) direction: Suppose G acts faithfully on X. Then $G_{X}=\{1\}$. Now for the sake of contradiction suppose there are two distinct elements $g_{1}, g_{2} \in G$ such that they have the same action on each element of X. Then $g_{1} \cdot x=g_{2} \cdot x$ for all $x \in X$. Hence, for all $x \in X$:

$$
\begin{aligned}
g_{2}^{-1} \cdot\left(g_{1} \cdot x\right) & =g_{2}^{-1} \cdot\left(g_{2} \cdot x\right) \\
\left(g_{2}^{-1} g_{1}\right) \cdot x & =x
\end{aligned}
$$

Therefore $g_{2}^{-1} g_{1} \in G_{X}$. But since $G_{X}=\{1\}$, then $g_{2}^{-1} g_{1}=1$, so $g_{1}=g_{2}$. But g_{1} and g_{2} are distinct. We have a contradiction! Therefore there are no two distinct elements of G having the same action on each element of X.

Now let's prove the (\Leftarrow) direction: Suppose that there are no two distinct elements of G having the same action on each element of X. Now suppose for the sake of contradiction that G does not act faithfully. Therefore there is an element $g \in G$ such that $g \in G_{X}$ and $1 \neq g$ (since G does not act faithfully on X). But then 1 and g have the same action on each element of x since $g \cdot x=x=1 \cdot x$ for all $x \in X$. This is a contradiction! Therefore G acts faithfully on X.

Problem 7. (Exercise 25)

If G is a group of order p^{n}, where p is prime and $n \geq 2$, show that G must have a proper subgroup of order p. If $n \geq 3$, is it true that G will have a proper subgroup of order p^{2} ?
Solution 7. Let $g \neq 1$ be an element of G. Then $|g| \neq 1$ and $|g| \mid p^{n}$. Therefore $|g|=p^{k}$ for some positive integer k. Now, let $h=g^{p^{k-1}}$. Then the order of h is

$$
|h|=\left|g^{p^{k-1}}\right|=\frac{|g|}{\operatorname{gcd}\left(|g|, p^{k-1}\right)}=\frac{p^{k}}{\operatorname{gcd}\left(p^{k}, p^{k-1}\right)}=\frac{p^{k}}{p^{k-1}}=p
$$

Therefore $\langle h\rangle$ is a subgroup of G with order p (and it is proper since it's not the whole group).
Now if G is a group of order p^{n} with $n \geq 3$, then if there is any element g of order p^{k} with $k \geq 2$, there exists an element with order p^{2} (by doing a similar construction as above, but this time letting $h=g^{p^{k-2}}$). This subgroup would also be proper since the order of the group is at least p^{3}. So the only way that G could avoid a subgroup of order p^{2} is if every non-identity element of G has order p. Let's consider this scenario where we have every element in G with order p. The center of G has p^{t} elements with $t \geq 1$ by the class
equation. Therefore there exists an nonidentity $h \in Z(G)$. Now let $k \notin\langle h\rangle$. Since h and k have order p and $k \notin\langle h\rangle$, then $\langle h\rangle \cap\langle k\rangle=\{1\}$. Since h commmutes with everything, then if $h^{a} \in\langle h\rangle$ and $k^{b} \in\langle k\rangle$, then

$$
h^{a} k^{b}=h^{a-1}\left(h k^{b}\right)=h^{a-1} k^{b} h=h^{a-2} k^{b} h^{2}=\ldots=k^{b} h^{a} .
$$

Therefore all the elements of $\langle h\rangle$ commute with all the elements of $\langle k\rangle$. Therefore $\langle h\rangle\langle k\rangle$ is a subgroup of G and it has order p^{2}. So if $Z(G)=\langle h\rangle$, then G has a subgroup of order p^{2}.

Therefore there is a proper subgroup of order p^{2} in any group of order p^{n} with $n \geq 3$.

2 Chapter 16

Problem 8. (Exercise 1)

Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?
(a) $7 \mathbb{Z}$
(b) \mathbb{Z}_{18}
(c) $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$
(d) $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b, c, d \in \mathbb{Q}\}$
(e) $\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}$
(f) $R=\{a+b \sqrt[3]{3}: a, b \in \mathbb{Q}\}$
(g) $\mathbb{Z}[i]=\left\{a+b i: a, b \in \mathbb{Z}\right.$ and $\left.i^{2}=-1\right\}$
(h) $\mathbb{Q}(\sqrt[3]{3})=\{a+b \sqrt[3]{3}+c \sqrt[3]{9}: a, b, c \in \mathbb{Q}\}$

Solution 8.

(a) $7 \mathbb{Z}$ is a ring but not a field (it does not have inverses).
(b) To turn in.
(c) To turn in.
(d) $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b, c, d \in \mathbb{Q}\}$ is a ring and a field.
(e) To turn in.
(f) To turn in.
(g) To turn in.
(h) $\mathbb{Q}(\sqrt[3]{3})=\{a+b \sqrt[3]{3}+c \sqrt[3]{9}: a, b, c \in \mathbb{Q}\}$ is a field. Once one adds $\sqrt[3]{9}$ to the mix, it works out.

Problem 9. (Exercise 3)
List or characterize all of the units in each of the following rings.
(a) \mathbb{Z}_{10}
(b) \mathbb{Z}_{12}
(c) \mathbb{Z}_{7}
(d) $\mathbb{M}_{2}(\mathbb{Z})$, the 2×2 matrices with entries in \mathbb{Z}
(e) $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$, the 2×2 matrices with entries in \mathbb{Z}_{2}

Solution 9.

(a) To turn in.
(b) To turn in.
(c) The units are the numbers relatively prime to 7 , so $1,2,3,4,5$ and 6 .
(d) We want to find 2×2 matrices A with integer entries that have an inverse with integer entries. Let A be the following matrix:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are integers such that $a d-b c=0$ (otherwise A does not have an inverse). Then

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

For A^{-1} to be an integer we need $\frac{a}{a d-b c}, \frac{b}{a d-b c}, \frac{c}{a d-b c}$, and $\frac{d}{a d-b c}$ to be integers. Therefore $a d-b c$ divides each of the terms. Suppose $a d-b c=n$. Now since $n \mid a, b, c, d$, we can write $a=a^{\prime} n, b=$ $b^{\prime} n, c=c^{\prime} n, d=d^{\prime} n$ for some integers $a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime}. Then $a d-b c=n^{2}\left(a^{\prime} d^{\prime}-b^{\prime} c^{\prime}\right)$. But $a d-b c=n$, so then

$$
a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=\frac{1}{n}
$$

Since $a^{\prime} d^{\prime}-b^{\prime} c^{\prime} \in \mathbb{Z}$, then $n=1$ or $n=-1$. If $n=1$ or $n=-1$, then clearly A^{-1} has integer entries. So the units are the matrices with integer entries that have determinant 1 or determinant -1 .
(e) Using the same analysis as above, the units are those with determinant 1 or -1 . There are only 16 possible matrices in $M_{2}(\mathbb{Z})$ because each entry is a 0 or a 1 . Among these entries, the determinant is always $-1,0$ or 1 . Therefore the units are all matrices that have non-zero determinant. Since there are only 16 , it is easy to find them all. Let A be

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with $0 \leq a, b, c, d \leq 1$ all integers. Then $a d=0$ or $a d=1$. If $a d=0$, the determinant is non-zero only when $b=c=1$. So we have 3 cases:
(Case 1) $a=1, b=1, c=1, d=0$,
(Case 2) $a=0, b=1, c=1, d=1$, and
(Case 3) $a=0, b=1, c=1, d=0$.
If $a d=1$, then $a=1$ and $d=1$. Then there are two ways $b c=0$ (for the determinant to be non-zero):
(Case 4) $a=1, b=0, c=1, d=1$,
(Case 5) $a=1, b=1, c=0, d=1$, and
(Case 6) $a=1, b=0, c=0, d=1$.
So there are 6 unit matrices in $M_{2}(\mathbb{Z})$:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \text { and }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem 10. (Exercise 11)
Prove that the Gaussian integers, $\mathbb{Z}[i]$, are an integral domain.

Solution 10. Let's assume we already know that the Gaussian integers are a ring and let's prove that they are an integral domain. Suppose $x, y \in \mathbb{Z}[i]$ such that $x y=0$. Let $x=a+b i$ and $y=x+d i$. Then

$$
0=x y=(a+b i)(c+d i)=(a c-b d)+(a d+b c) i .
$$

Therefore

$$
a c-b d=0,
$$

and

$$
a d+b c=0 .
$$

If $c=0$, then $b d=0$ and $a d=0$. If $d=0$, then $c+d i=0+0 i=0$, so $y=0$ (and hence one of x and y is 0). If $d \neq 0$, then since $b d=0, b=0$; and because $a d=0, a=0$. Therefore $a+b i=0+0 i=0$, so $x=0$. Therefore if $c=0$, one of x and y is zero.

Now let's take care of the case $c \neq 0$. Then $a=\frac{b d}{c}$ and so $\frac{b d^{2}}{c}=-b d$, implying $b d^{2}=-b c^{2}$. If $b \neq 0$, then $d^{2}=-c^{2}$. But $d^{2} \geq 0$ and $c^{2} \geq 0$. The only way $d^{2}=-c^{2}$ is if $d=c=0$, in which case $y=0$. Since $c \neq 0$, then $b=0$. But then

$$
a=\frac{b d}{c}=\frac{0}{c}=0,
$$

so $x=a+b i=0+0 i=0$.
In all cases, we have that either $x=0$ or $y=0$ and hence $\mathbb{Z}[i]$ is an integral domain.
Problem 11. (Exercise 12)
Prove that $\mathbb{Z}[\sqrt{3} i]=\{a+b \sqrt{3} i: a, b \in \mathbb{Z}\}$ is an integral domain.
Solution 11. To turn in.

Problem 12. (Exercise 17)

Let a be any element in a ring R with identity. Show that $(-1) a=-a$.
Solution 12. By distributivity $(1+(-1)) a=a+(-1) a$. But $(1+(-1)) a=0 a=0$. Therefore $a+(-1) a=0$. Therefore $(-1) a$ is the additive inverse of a and hence $(-1) a=-a$.

Problem 13. (Exercise 30)
Let R be a ring with identity 1_{R} and S a subring of R with identity 1_{S}. Prove or disprove that $1_{R}=1_{S}$.
Solution 13. The identities need not be the same. For example let $R=\mathbb{Z}_{6}$ and let $S=\{0,3\}$. Addition in S is commutative and associative because they are commutative and associative in R. Multiplication is associative for the same reason and the two operations satisfy the distributive properties for the same reason. $\{0\} \in S$. If $r, s \in S$, then $r+s \in S, r s \in S$, and $r-s \in S$ (there are only 4 combinations of r and s since each element is either 0 or 3). So S seems to be a subring of R, all it needs to be a subring is to have a multiplicative identity. But $3 \times 0=0$ and $3 \times 3=3$ (modulo 6), therefore 3 is the multiplicative identity of S. But 1 is the multiplicative identity of R. So they need not be the same.

