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1 Chapter 14

Problem 1. (Exercise 2)
Compute all Xg and all Gx for each of the following permutation groups.

(a) X = {1, 2, 3},
G = S3 = {(1), (12), (13), (23), (123), (132)}

(b) X = {1, 2, 3, 4, 5, 6},
G = {(1), (12), (345), (354), (12)(345), (12)(354)}

Solution 1. To turn in.

Problem 2. (Exercise 3)
Compute the G-equivalence classes of X for each of the G-sets in the previous Exercise. For each x ∈ X
verify that |G| = |Ox| · |Gx|.

Solution 2. To turn in.

Problem 3. (Exercise 4)
Let G be the additive group of real numbers. Let the action of θ ∈ G on the real plane R2 be given by
rotating the plane counterclockwise about the origin through θ radians. Let P be a point on the plane other
than the origin.

(a) Show that R2 is a G-set.

(b) Describe geometrically the orbit containing P .

(c) Find the group GP .

Solution 3. To turn in.

Problem 4. (Exercise 5)
Let G = A4 and suppose that G acts on itself by conjugation; that is, (g, h) 7→ ghg−1.

(a) Determine the conjugacy classes (orbits) of each element of G.

(b) Determine all of the isotropy subgroups for each element of G.

Solution 4. To turn in.

Problem 5. (Exercise 6)
Find the conjugacy classes and the class equation for each of the following groups.

(a) S4

(b) D5

(c) Z9
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(d) Q8

Solution 5.

(a)

S4 = {(1), (12), (13), (14), (23), (24), (34), (123), (132), (124), (142), (134), (143), (234), (243),

(12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432)}.

Z(S4) = {(1)}.

We know that if σ ∈ S4, then σ(12)σ−1 = (σ(1), σ(2)), so that makes it easier to calculate the conjugacy
class of (12). For example

(1342)(12)(1342)−1 = ((1342)(1), (1342)(2)) = (31) = (13).

The orbit of (12) is
O(12) = {(12), (23), (24), (13), (14), (34)}.

It turned out to be all transpositions. The orbit of (123) is

O(123) = {(123), (132), (124), (142), (134), (143), (234), (243)}.

The orbit of (12)(34) is
O(12)(34) = {(12)(34), (13)(24), (14)(23)}.

There is one more conjugacy class:

O(1234) = {(1234), (1243), (1324), (1342), (1423), (1432)}.

The conjugacy classes break out in cycle types.

|S4| = 24, |Z(G)| = 1, |O(12)| = 6, |O(123)| = 8, |O(12)(34)| = 3, |O(1234) = 6|,

so
24 = 1 + 6 + 8 + 3 + 6.

(b) To turn in.

(c) To turn in.

(d)
Q8 = {1, i, j, k,−1,−i,−j,−k},

where i2 = j2 = k2 = ijk = −1. Let’s use the Cayley table to help us find the conjugacy classes:

× 1 i j k −i −j −k −1
1 1 i j k −1 −j −k −1
i i −1 k −j 1 −k j −i
j j −k −1 i k 1 −i −j
k k j −i −1 −j i 1 −k
−i −i 1 −k j −1 k −j i
−j −j k 1 −i −k −1 i j
−k −k −j i 1 j −i −1 k
−1 −1 −i −j −k i j k 1

Since the first row equals the first column 1 ∈ Z(Q8). Since the last row equals the last column, then
−1 ∈ Z(Q8). Every other row is not equal to its corresponding column, so the center contains just 1
and -1. Therefore

Z(Q8) = {1,−1}.
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Now let’s find the conjugacy class containing i. Let’s compute an example: jij−1 = −jij = −jk = −i,
so −i is in the conjugacy class of i. If we compute xix−1 for all x ∈ Q8, we get the following set:

Oi = {i,−i}.

Since i, j, k are symmetric, then

Oj = {j,−j}
Ok = {k,−k}.

So the conjugacy classes are {i,−i}, {j,−j}, {k,−k} and the center is {1,−1}. The class equation
looks like

8 = 2 + 2 + 2 + 2.

Problem 6. (Exercise 20)
A group acts faithfully on a G-set X if the identity is the only element of G that leaves every element of
X fixed. Show that G acts faithfully on X if and only if no two distinct elements of G have the same action
on each element of X.

Solution 6. Let
GX = {g ∈ G | g · x = x ∀x ∈ X}.

A group action from G to X is faithful when GX = {1}.
Let’s begin by proving the (⇒) direction: Suppose G acts faithfully on X. Then GX = {1}. Now for the

sake of contradiction suppose there are two distinct elements g1, g2 ∈ G such that they have the same action
on each element of X. Then g1 · x = g2 · x for all x ∈ X. Hence, for all x ∈ X:

g−12 · (g1 · x) = g−12 · (g2 · x)

(g−12 g1) · x = x.

Therefore g−12 g1 ∈ GX . But since GX = {1}, then g−12 g1 = 1, so g1 = g2. But g1 and g2 are distinct. We
have a contradiction! Therefore there are no two distinct elements of G having the same action on each
element of X.

Now let’s prove the (⇐) direction: Suppose that there are no two distinct elements of G having the
same action on each element of X. Now suppose for the sake of contradiction that G does not act faithfully.
Therefore there is an element g ∈ G such that g ∈ GX and 1 6= g (since G does not act faithfully on X).
But then 1 and g have the same action on each element of x since g · x = x = 1 · x for all x ∈ X. This is a
contradiction! Therefore G acts faithfully on X.

Problem 7. (Exercise 25)
If G is a group of order pn, where p is prime and n ≥ 2, show that G must have a proper subgroup of order
p. If n ≥ 3, is it true that G will have a proper subgroup of order p2?

Solution 7. Let g 6= 1 be an element of G. Then |g| 6= 1 and |g| | pn. Therefore |g| = pk for some positive

integer k. Now, let h = gp
k−1

. Then the order of h is

|h| = |gp
k−1

| = |g|
gcd (|g|, pk−1)

=
pk

gcd (pk, pk−1)
=

pk

pk−1
= p.

Therefore 〈h〉 is a subgroup of G with order p (and it is proper since it’s not the whole group).
Now if G is a group of order pn with n ≥ 3, then if there is any element g of order pk with k ≥ 2, there

exists an element with order p2 (by doing a similar construction as above, but this time letting h = gp
k−2

).
This subgroup would also be proper since the order of the group is at least p3. So the only way that G could
avoid a subgroup of order p2 is if every non-identity element of G has order p. Let’s consider this scenario
where we have every element in G with order p. The center of G has pt elements with t ≥ 1 by the class

3



equation. Therefore there exists an nonidentity h ∈ Z(G). Now let k 6∈ 〈h〉. Since h and k have order p and
k 6∈ 〈h〉, then 〈h〉 ∩ 〈k〉 = {1}. Since h commmutes with everything, then if ha ∈ 〈h〉 and kb ∈ 〈k〉, then

hakb = ha−1(hkb) = ha−1kbh = ha−2kbh2 = . . . = kbha.

Therefore all the elements of 〈h〉 commute with all the elements of 〈k〉. Therefore 〈h〉〈k〉 is a subgroup of G
and it has order p2. So if Z(G) = 〈h〉, then G has a subgroup of order p2.

Therefore there is a proper subgroup of order p2 in any group of order pn with n ≥ 3.

2 Chapter 16

Problem 8. (Exercise 1)
Which of the following sets are rings with respect to the usual operations of addition and multiplication? If
the set is a ring, is it also a field?

(a) 7Z

(b) Z18

(c) Q(
√

2 ) = {a+ b
√

2 : a, b ∈ Q}

(d) Q(
√

2,
√

3 ) = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q}

(e) Z[
√

3 ] = {a+ b
√

3 : a, b ∈ Z}

(f) R = {a+ b 3
√

3 : a, b ∈ Q}

(g) Z[i] = {a+ bi : a, b ∈ Z and i2 = −1}

(h) Q( 3
√

3 ) = {a+ b 3
√

3 + c 3
√

9 : a, b, c ∈ Q}

Solution 8.

(a) 7Z is a ring but not a field (it does not have inverses).

(b) To turn in.

(c) To turn in.

(d) Q(
√

2,
√

3 ) = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} is a ring and a field.

(e) To turn in.

(f) To turn in.

(g) To turn in.

(h) Q( 3
√

3 ) = {a+ b 3
√

3 + c 3
√

9 : a, b, c ∈ Q} is a field. Once one adds 3
√

9 to the mix, it works out.

Problem 9. (Exercise 3)
List or characterize all of the units in each of the following rings.

(a) Z10

(b) Z12

(c) Z7

(d) M2(Z), the 2× 2 matrices with entries in Z

(e) M2(Z2), the 2× 2 matrices with entries in Z2
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Solution 9.

(a) To turn in.

(b) To turn in.

(c) The units are the numbers relatively prime to 7, so 1, 2, 3, 4, 5 and 6.

(d) We want to find 2× 2 matrices A with integer entries that have an inverse with integer entries. Let A
be the following matrix:

A =

(
a b
c d

)
,

where a, b, c, d are integers such that ad− bc = 0 (otherwise A does not have an inverse). Then

A−1 =
1

ad− bc

(
d −b
−c a

)
.

For A−1 to be an integer we need
a

ad− bc
,

b

ad− bc
,

c

ad− bc
, and

d

ad− bc
to be integers. Therefore

ad− bc divides each of the terms. Suppose ad− bc = n. Now since n|a, b, c, d, we can write a = a′n, b =
b′n, c = c′n, d = d′n for some integers a′, b′, c′ and d′. Then ad− bc = n2(a′d′ − b′c′). But ad− bc = n,
so then

a′d′ − b′c′ =
1

n
.

Since a′d′ − b′c′ ∈ Z, then n = 1 or n = −1. If n = 1 or n = −1, then clearly A−1 has integer entries.
So the units are the matrices with integer entries that have determinant 1 or determinant −1.

(e) Using the same analysis as above, the units are those with determinant 1 or −1. There are only 16
possible matrices in M2(Z) because each entry is a 0 or a 1. Among these entries, the determinant is
always -1, 0 or 1. Therefore the units are all matrices that have non-zero determinant. Since there are
only 16, it is easy to find them all. Let A be

A =

(
a b
c d

)
,

with 0 ≤ a, b, c, d ≤ 1 all integers. Then ad = 0 or ad = 1. If ad = 0, the determinant is non-zero only
when b = c = 1. So we have 3 cases:

(Case 1) a = 1, b = 1, c = 1, d = 0,

(Case 2) a = 0, b = 1, c = 1, d = 1, and

(Case 3) a = 0, b = 1, c = 1, d = 0.

If ad = 1, then a = 1 and d = 1. Then there are two ways bc = 0 (for the determinant to be non-zero):

(Case 4) a = 1, b = 0, c = 1, d = 1,

(Case 5) a = 1, b = 1, c = 0, d = 1, and

(Case 6) a = 1, b = 0, c = 0, d = 1.

So there are 6 unit matrices in M2(Z):(
1 1
1 0

)
,

(
0 1
1 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)(
1 1
0 1

)
, and

(
1 0
0 1

)
.

Problem 10. (Exercise 11)
Prove that the Gaussian integers, Z[i], are an integral domain.
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Solution 10. Let’s assume we already know that the Gaussian integers are a ring and let’s prove that they
are an integral domain. Suppose x, y ∈ Z[i] such that xy = 0. Let x = a+ bi and y = x+ di. Then

0 = xy = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Therefore
ac− bd = 0,

and
ad+ bc = 0.

If c = 0, then bd = 0 and ad = 0. If d = 0, then c+ di = 0 + 0i = 0, so y = 0 (and hence one of x and y is
0). If d 6= 0, then since bd = 0, b = 0; and because ad = 0, a = 0. Therefore a + bi = 0 + 0i = 0, so x = 0.
Therefore if c = 0, one of x and y is zero.

Now let’s take care of the case c 6= 0. Then a =
bd

c
and so

bd2

c
= −bd, implying bd2 = −bc2. If b 6= 0,

then d2 = −c2. But d2 ≥ 0 and c2 ≥ 0. The only way d2 = −c2 is if d = c = 0, in which case y = 0. Since
c 6= 0, then b = 0. But then

a =
bd

c
=

0

c
= 0,

so x = a+ bi = 0 + 0i = 0.
In all cases, we have that either x = 0 or y = 0 and hence Z[i] is an integral domain.

Problem 11. (Exercise 12)
Prove that Z[

√
3 i] = {a+ b

√
3 i : a, b ∈ Z} is an integral domain.

Solution 11. To turn in.

Problem 12. (Exercise 17)
Let a be any element in a ring R with identity. Show that (−1)a = −a.

Solution 12. By distributivity (1+(−1))a = a+(−1)a. But (1+(−1))a = 0a = 0. Therefore a+(−1)a = 0.
Therefore (−1)a is the additive inverse of a and hence (−1)a = −a.

Problem 13. (Exercise 30)
Let R be a ring with identity 1R and S a subring of R with identity 1S . Prove or disprove that 1R = 1S .

Solution 13. The identities need not be the same. For example let R = Z6 and let S = {0, 3}. Addition
in S is commutative and associative because they are commutative and associative in R. Multiplication is
associative for the same reason and the two operations satisfy the distributive properties for the same reason.
{0} ∈ S. If r, s ∈ S, then r + s ∈ S, rs ∈ S, and r − s ∈ S (there are only 4 combinations of r and s since
each element is either 0 or 3). So S seems to be a subring of R, all it needs to be a subring is to have a
multiplicative identity. But 3× 0 = 0 and 3× 3 = 3 (modulo 6), therefore 3 is the multiplicative identity of
S. But 1 is the multiplicative identity of R. So they need not be the same.
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