page 1

A Short Proof of a Sum of Powers Formula

We give a combinatorial proof of the following classical result:

Theorem.

$$1^{k} + 2^{k} + \dots + n^{k} = \sum_{j=1}^{k} j! {k \choose j} {n+1 \choose j+1},$$
(1)

where $\binom{n}{k}$, denoting Stirling numbers of the second kind, is the number of ways of partitioning a set of n labelled objects into k nonempty unlabelled subsets.

Proof. Observe that

$$\sum_{i=1}^{n} i^{k} = \sum_{i \le n} \sum_{a_{1} \le i} \sum_{a_{2} \le i} \cdots \sum_{a_{k} \le i} 1 = \sum_{1 \le a_{1}, a_{2}, \dots, a_{k} \le i \le n} 1.$$

Therefore, we need to count how many k + 1 tuples $(a_1, a_2, \ldots, a_k, i)$ exist with the constraints $1 \le a_m \le i \le n$ for all $1 \le m \le k$. To simplify, make the change of variable $\ell = i + 1$ and count the tuples $(a_1, a_2, \ldots, a_k, \ell)$ such that $1 \le a_m < \ell \le n + 1$.

Let $j \in \{1, ..., k\}$. Consider a subset S of $\{1, 2, ..., n+1\}$ with j+1 elements. We want to count the number of tuples $(a_1, a_2, ..., a_k, \ell)$ satisfying $1 \le a_m < \ell \le n+1$ and that the values taken by the elements in the tuple are exactly those in S. Since $\ell > a_m$ for all m, we see that ℓ is forced to be the maximum among the elements of S. Then we have the other j possible values from S distributed among $a_1, a_2, ..., a_k$. There are $\binom{k}{j}$ ways of partitioning $\{a_1, a_2, ..., a_k\}$ into j blocks.¹ Then there are j! ways of assigning values to those blocks from the values left in S. There are $\binom{n+1}{j+1}$ ways of choosing S. After summing over j we recover (1).

Remark: The proof shares similarities with [1] where the author also translates the sum of powers into the same combinatorial problem as we do. However, the subsequent techniques used are different.

REFERENCES

1. G. Mackiw, A combinatorial approach to sums of integer powers, *Math. Magazine* **73** no. 1 (2000) 44–46.

—Submitted by Enrique Treviño, Lake Forest College

http://dx.doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 05A15, Secondary 05A10; 11B57

¹ To clarify what we mean by blocks, consider the following example: In the k = 3 case with j = 2, we want 2 blocks. There are 3, namely $\{\{a_1, a_2\}, \{a_3\}\}, \{\{a_1, a_3\}, \{a_2\}\}$, and $\{\{a_2, a_3\}, \{a_1\}\}$.