A Short Proof of a Sum of Powers Formula

We give a combinatorial proof of the following classical result:

Theorem.

$$
1^{k}+2^{k}+\cdots+n^{k}=\sum_{j=1}^{k} j!\left\{\begin{array}{l}
k \tag{1}\\
j
\end{array}\right\}\binom{n+1}{j+1},
$$

where $\left\{\begin{array}{c}n \\ k\end{array}\right\}$, denoting Stirling numbers of the second kind, is the number of ways of partitioning a set of n labelled objects into k nonempty unlabelled subsets.

Proof. Observe that

$$
\sum_{i=1}^{n} i^{k}=\sum_{i \leq n} \sum_{a_{1} \leq i} \sum_{a_{2} \leq i} \cdots \sum_{a_{k} \leq i} 1=\sum_{1 \leq a_{1}, a_{2}, \ldots, a_{k} \leq i \leq n} 1 .
$$

Therefore, we need to count how many $k+1$ tuples $\left(a_{1}, a_{2}, \ldots, a_{k}, i\right)$ exist with the constraints $1 \leq a_{m} \leq i \leq n$ for all $1 \leq m \leq k$. To simplify, make the change of variable $\ell=i+1$ and count the tuples $\left(a_{1}, a_{2}, \ldots, a_{k}, \ell\right)$ such that $1 \leq a_{m}<\ell \leq n+1$.

Let $j \in\{1, \ldots, k\}$. Consider a subset S of $\{1,2, \ldots, n+1\}$ with $j+1$ elements. We want to count the number of tuples $\left(a_{1}, a_{2}, \ldots, a_{k}, \ell\right)$ satisfying $1 \leq a_{m}<\ell \leq n+1$ and that the values taken by the elements in the tuple are exactly those in S. Since $\ell>a_{m}$ for all m, we see that ℓ is forced to be the maximum among the elements of S. Then we have the other j possible values from S distributed among $a_{1}, a_{2}, \ldots, a_{k}$. There are $\left\{\begin{array}{c}k \\ j\end{array}\right\}$ ways of partitioning $\left\{a_{1}, a_{2}, \ldots a_{k}\right\}$ into j blocks. ${ }^{1}$ Then there are j ! ways of assigning values to those blocks from the values left in S. Therefore we have $j!\left\{\begin{array}{l}k \\ j\end{array}\right\}$ ways of matching the tuples to the values of S. There are $\binom{n+1}{j+1}$ ways of choosing S. After summing over j we recover (1).

Remark: The proof shares similarities with [1] where the author also translates the sum of powers into the same combinatorial problem as we do. However, the subsequent techniques used are different.

REFERENCES

1. G. Mackiw, A combinatorial approach to sums of integer powers, Math. Magazine 73 no. 1 (2000) 44-46.
[^0]
[^0]: ${ }^{1}$ To clarify what we mean by blocks, consider the following example: In the $k=3$ case with $j=2$, we want 2 blocks. There are 3, namely $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{3}\right\}\right\},\left\{\left\{a_{1}, a_{3}\right\},\left\{a_{2}\right\}\right\}$, and $\left\{\left\{a_{2}, a_{3}\right\},\left\{a_{1}\right\}\right\}$. http://dx.doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 05A15, Secondary 05A10; 11B57

