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1 Introduction

The sequence 2, 5, 8, 11, . . . contains no perfect squares. This is for the simple reason that
x2 ≡ 0, 1 mod 3. We say that 2 is a quadratic non-residue modulo 3. In general we say a is a
quadratic non-residue modulo n if there is no x such that gcd(x, n) = 1 and x2 ≡ a mod n. If
such an x exists and gcd(x, n) = 1, then we say a is a quadratic residue. We will concentrate
on the case where n = p an odd prime number. (Throughout p will always denote an odd
prime.) The Legendre symbol is defined as

(
a

p

)
=


1 if there exists x 6≡ 0 mod p such that x2 ≡ a mod p

−1 if there is no x such that x2 ≡ a mod p

0 if x ≡ 0 mod p.

Notice that a is a quadratic non-residue modulo p if and only if
(
a
p

)
= −1.

Our main object of study in this paper is the following question: How large is the least
quadratic non-residue modulo p? We will denote the least quadratic non-residue np. Our
goal is to provide (in one place), the proofs of the main “classical” results on this problem
and to survey the more recent explicit results. In section 2 we will describe the history and
some heuristics on the size of np. In section 3 we will prove the Pólya–Vinogradov theorem.
In section 4 we will give a clear and relatively short proof of an explicit Burgess inequality. In
section 5 we will mention recent explicit results and we will include a couple of new theorems
(Theorems 5.4 and 5.6) to showcase the techniques in the paper. In section 6, we will discuss
a classical result of Linnik on np for most primes p. Finally, in section 7 we will prove an
explicit version of a theorem of Ankeny under the Generalized Riemann Hypothesis.

2 History and Heuristics

Let’s first try to get some intuition on how big np is. First note that np is always prime.
This is because if np = ab for 1 < a, b < np, then since np is the least quadratic non-
residue, that means a, b are quadratic residues, but then m2

1 ≡ a mod p and m2
2 ≡ b mod p,

so (m1m2)
2 ≡ ab = np mod p. But that means np is a quadratic residue. Therefore, np is

prime. Now, let’s try to see how often np = 2 (the smallest prime). A famous result of Gauss
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is that 2 is a quadratic non-residue whenever p ≡ 3, 5 mod 8 and 2 is a quadratic residue
whenever p ≡ 1, 7 mod 8. Since primes are equidistributed among the coprime residue classes
(this is due to Dirichlet’s theorem on primes in arithmetic progressions), then np = 2 half of
the time. In other words if we let x be a real number and π(x) is the number of primes less
than or equal to x, then

lim
x→∞

|{p ≤ x |np = 2}|
π(x)

=
2

4
=

1

2
.

Using quadratic reciprocity, we can see that np = 3, whenever p ≡ 7, 17 mod 24. There
are 8 residue classes coprime with 24 and each of them has the same number of primes
asymptotically (by Dirichlet’s Theorem), so

lim
x→∞

|{p ≤ x |np = 3}|
π(x)

=
2

8
=

1

4
.

Let p1 = 2, p2 = 3, . . . , pk = the k-th prime, one can prove (using quadratic reciprocity,
the Chinese remainder theorem, and Dirichlet’s theorem) that

lim
x→∞

|{p ≤ x |np = pk}|
π(x)

=
1

2k
.

The above suggests the following heuristic: Suppose that k ≈ log2 x, then 1
2k
≈ 1

x
.

Therefore, the “expected number” of primes with np = pk is 1. If k is much larger, then
we wouldn’t expect any, and if k is smaller we would expect some. Therefore, it seems
that np can be as large as plog2 x which is (by the Prime Number Theorem) asymptotically
log2 x log log x. Table 1 contains the list of smallest primes p satisfying np = pk, it also
compares to log p log log p to see how good an estimate it is.1

The heuristic above suggests that np ≤ C log p log log p for some constant C. It also
suggests that np ≥ C log p log log p for infinitely many p (and some constant C). Evidence
in the direction of these conjectures is that Graham and Ringrose [14], in 1990, proved that
np ≥ C log p log log log p for infinitely many p and some constant C.2 In fact, assuming
the Generalized Riemann Hypothesis (GRH), Montgomery [33, Theorem 13.5], in 1971,
proved precisely the lower bound heuristic, namely that np ≥ C log p log log p for infinitely
many p and some constant C. For the upper bound, assuming GRH, Ankeny [1], in 1952,
proved np ≤ C log2 p for some constant C. Bach [2], in 1985, made the constant explicit,
showing np ≤ 2 log2 p. Finally in 2015, Lamzouri, Li and Soundararajan [21] improved
this to np ≤ log2 p. However, we cannot prove anything remotely close to that upper bound
unconditionally. The first breakthrough in getting a good upper bound for the least quadratic
non-residue was done by Vinogradov in 1918 (see pages 53–57 of [50]). He came up with the
following strategy using Dirichlet characters. For a positive integer q, a function χ : Z→ C
is called a Dirichlet character modulo q if

1. χ(nm) = χ(n)χ(m) for all n,m ∈ Z, i.e., χ is completely multiplicative;

1Salié in 1965 [41], using a table just like the first two columns of Table 1 (but with one extra row),
disproved two conjectures: that the first column is increasing and that all of its elements greater than 3 are
7 mod 8.

2In 1949, Fridlender [12] and Salié [40], independently proved that np ≥ C log p for some constant C.
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p np log p log log p
3 2 0.10
7 3 1.30
23 5 3.58
71 7 6.18
311 11 10.03
479 13 11.23
1559 17 14.67
5711 19 18.66
10559 23 20.63
18191 29 22.40
31391 31 24.20
422231 37 33.18
701399 41 40.00
366791 43 32.68
3818929 47 41.20

Table 1: The smallest primes p satisfying that np = pk for k = 1, 2, . . . , 15, and a comparison
with log p log log p. It is worth noting that not all of the p in the table are 7 mod 8.

2. χ(n+ kq) = χ(n) for all n, k ∈ Z, i.e., χ is periodic modulo q;

3. χ(n) = 0 if and only if (n, q) > 1.

χ is called a Dirichlet character modulo q in honor of Dirichlet’s introduction of such func-
tions in 1839 for his glorious proof of his namesake theorem regarding primes in arithmetic
progressions.

Vinogradov then proved what is now known as the Pólya–Vinogradov inequality (Pólya
discovered this independently), which is

Theorem 2.1 (Pólya–Vinogradov inequality). Let χ be a non-principal3 Dirichlet chararcter
modulo q. Let N be any positive integer, then there exists a constant C such that∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ ≤ C
√
q log(q).

Remark 2.2. Vinogradov’s proof works with C = 1 but it assumes q is prime. The best
current estimates for C can be found in [13] and [16].

Now, the Legendre symbol is a Dirichlet character modulo p (for any odd p), and it’s
not the principal character (since there are p−1

2
> 0 quadratic non-residues modulo p for any

odd prime p). Therefore, if p > N > C
√
p log (p), then

N∑
n=1

(
n

p

)
≤ C
√
p log p < N.

3The principal Dirichlet character modulo q is the one defined as χ(n) = 1 when gcd(n, q) = 1 and
χ(n) = 0 otherwise.
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But if the sum is less than N , that means it cannot consist of only 1’s. Therefore, one of the
values is -1 (since p > N , none of the values is 0). This means that (for large enough p)

np ≤ C
√
p log p.

Remark 2.3. There is an elementary proof that np <
√
p + 1. The proof is as follows.

Suppose that np = q ≥ √p + 1. Let k = dp
q
e. Since q ≥ √p + 1, then p

q
<
√
p, so

dp
q
e < p

q
+1 <

√
p+1. Therefore k < q, which implies k is a quadratic residue. Furthermore,

p < kq < p + q, therefore kq is also a quadratic residue. But since q is a quadratic non-
residue, and k is a quadratic residue, then kq is a quadratic non-residue. Contradiction!

Vinogradov then came up with a very clever idea which is now known as Vinogradov’s
trick. To understand the following we will need a little bit of notation. We say that the
function f(n) is little oh of the function g(n), and write f(n) = o(g(n)) if lim

n→∞
f(n)/g(n) = 0.

Theorem 2.4 (Vinogradov’s trick). Let χ(n) =
(
n
p

)
be the Legendre symbol of n modulo p

for p prime. Suppose that x is a large real number such that∑
1≤n≤x

χ(n) = o(x). (1)

Let ε > 0 and let y = x
1√
e
+ε

. Then, for large enough x, there exists n ≤ y such that
χ(n) = −1.

Proof. We may assume x < p since the sum is 0 for x = p and χ is periodic modulo p.
Observe that since χ is totally multiplicative, then χ(n) = −1 implies n has a prime divisor
q satisfying χ(q) = −1. Now suppose that for all q ≤ y, χ(q) = 1. Then∑

1≤n≤x

χ(n) =
∑

1≤n≤x

1− 2
∑

1≤n≤x
χ(n)=−1

1 = bxc − 2
∑
y<q≤x
χ(q)=−1

∑
n≤x

q

1.

Therefore ∑
n≤x

χ(n) ≥ bxc − 2
∑
y<q≤x

⌊
x

q

⌋
≥ x− 1− 2x

∑
y<q≤x

1

q
.

Merten’s theorem says that∑
y<q≤x

1

q
= log log x− log log y +O

(
1

log y

)
and therefore there is a δ > 0 such that for large enough x we have∑

y<q≤x

1

q
≤ log log x− log log y + δ = − log

(
1√
e

+ ε

)
+ δ <

1

2
.

Therefore, there exists a constant C > 0 such that
∑

n≤x χ(n) ≥ Cx, which contradicts
(1).
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Translating this to our interests, from the Pólya–Vinogradov inequality we have that for
x =
√
p(log p)2, equation (1) is satisfied. But then that means that for any ε > 0, for a large

enough p (depending on ε),

np ≤ p
1

2
√
e
+ε
.

One interesting thing about the Pólya–Vinogradov inequality is that it does not depend
on the number of summands, the upper bound of

√
p log p works regardless of how many

terms N are summed. One heuristic for how Dirichlet characters behave is to model them
as if they were uniformly random on the unit circle. The Central Limit Theorem from
probability would then suggest that a constant multiple of

√
N works as an upper bound.

But characters are not random, so Vinogradov conjectures that for any ε > 0,∣∣∣∣∣
N∑
n=1

χ(n)

∣∣∣∣∣ ≤ √Nqε.
From this heuristic, he predicts:

Conjecture 2.5 (Vinogradov). Given ε > 0, we have np ≤ pε for sufficiently large primes
p.

In the 1940s, Linnik introduced the large sieve in order to prove that np � pε holds
for most primes ([25], [26]); this will be discussed in section 6. A big breakthrough in the
direction of Vinogradov’s conjecture came from Burgess in a series of papers in the early
1960s ([6], [8], [7]), where he proved a slightly weaker version of the following inequality,
which can be found in [18]:

Theorem 2.6 (Burgess inequality). Let χ be a non-principal character mod q, where q > 1
is prime, and r is a positive integer. Then, there exists a constant C, such that∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ ≤ CN1− 1
r q

r+1

4r2 (log q)1/r,

where the constant C depends only on ε and r.

Remark 2.7. Burgess proved a slightly weaker inequality, but it also holds when q is cubefree,
as well as for any q when r = 1, 2, 3.

Remark 2.8. When r = 1, one recovers the Pólya–Vinogradov inequality. When r = 2 one
gets the desired

√
N term, at the cost of a big power of q. As r is larger, the power of q is

smaller, so as r →∞, the bound tends to the trivial inequality.

What does this imply for the least quadratic non-residue modulo p? If χ(n) = 1 for all
n ≤ N , then by the Burgess inequality one would have

N =

∣∣∣∣∣∑
n≤N

χ(n)

∣∣∣∣∣ ≤ CN1− 1
r q

r+1

4r2 (log p)1/r,
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and consequently
N ≤ Crq

1
4
+ 1

4r log p.

For δ > 0 and q large enough , we can see that N = q1/4+δ satisfies (1). Therefore, given
ε > 0, for all large enough p, we have

np ≤ p
1

4
√
e
+ε
.

No significant unconditional improvements have been done on this result from the 1960s.
The modern improvements are in terms of making the constants explicit. These results will
be described in section 5.

3 The Pólya–Vinogradov inequality

Let q ∈ Z+. Recall that a function χ : Z→ C is called a Dirichlet character modulo q if

1. χ(nm) = χ(n)χ(m) for all n,m ∈ Z;

2. χ(n+ kq) = χ(n) for all n, k ∈ Z;

3. χ(n) = 0 if and only if (n, q) > 1.

There is a one-to-one correspondence between Dirichlet characters χ : Z → C and group
homomorphisms χ : (Z/qZ)? → C?. The principal character mod q is defined by

χ0(n) =

{
1 if (n, q) = 1

0 if (n, q) > 1.

As mentioned before, the Legendre symbol χ(n) = (n/p) is a Dirichlet character modulo p.
Since this is our main focus, we will simplify our exposition by considering only Dirichlet
characters modulo p. Our goal in this section is to prove the Pólya–Vinogradov inequality
for prime moduli.

Remark 3.1. Let p be an odd prime. Choose a primitive root g modulo p; that is, (Z/pZ)? =
〈g〉. For a = 0, 1, . . . , p−2, we can define a Dirichlet character χa by the mapping gν 7→ ζaνp−1,

where ζp−1 = e
2πi
p−1 . This gives all Dirichlet characters mod p. In fact, the map gν 7→ χν gives

an isomorphism between (Z/pZ)? and the group all Dirichlet characters modulo p.

Example. There are 6 Dirichlet characters modulo 7. Choosing g = 5, and using that
ζ6 = −ζ23 , we get the following table

n 0 1 2 3 4 5 6
χ0(n) 0 1 1 1 1 1 1
χ1(n) 0 1 ζ23 −ζ3 ζ3 −ζ23 −1
χ2(n) 0 1 ζ3 ζ23 ζ23 ζ3 1
χ3(n) 0 1 1 −1 1 −1 −1
χ4(n) 0 1 ζ23 ζ3 ζ3 ζ23 1
χ5(n) 0 1 ζ3 −ζ23 ζ23 −ζ3 −1
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To simplify our notation going forward, let e(x) = e2πix. For example ζp−1 = e
2πi
p−1 =

e( 1
p−1).

Definition 3.2. If χ is a Dirichlet character modulo p, then the Gauss sum associated to χ
is defined as

τ(χ) =

p∑
n=1

χ(n)e(n/p) .

For a = 0, 1, . . . , p− 1, we also define τa(χ) =
∑p

n=1 χ(n)e(an/p). Notice that τ(χ) = τ1(χ).

The following lemma is a consequence of the fact that if a 6≡ 0 mod p, then a, 2a, . . . , pa mod
p is a permutation of 0, 1, 2, . . . , p− 1.

Lemma 3.3.

τa(χ) =


χ(a−1)τ(χ) if χ 6= χ0, and a 6= 0

0 if χ 6= χ0, and a = 0

0 if χ = χ0, and a 6= 0

p− 1 if χ = χ0, and a = 0.

We are now ready to prove a classical result due to Gauss.

Theorem 3.4. If χ is a non-principal Dirichlet character modulo p, then

|τ(χ)| = √p .

Proof. The idea is to evaluate the sum

S =

p−1∑
a=0

τa(χ)τa(χ)

in two different ways. On the one hand, |τa(χ)| = |τ(χ)| when a 6= 0 and therefore S =
(p− 1)|τ(χ)|2. On the other hand, we can write

S =
∑
a

∑
n,m

χ(n)χ(m)e(a(n−m)/p)

and push the
∑

a to the inside to find that S = p(p− 1).

First, we will prove a result where the evaluation of a Dirichlet character at n is written
in terms of a Gauss sum.

Lemma 3.5. If χ is a non-principal Dirichlet character modulo p, then

χ(n) =
1

τ(χ)

p∑
a=1

χ(a) e(an/p) . (2)
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Proof.

τ(χ)χ(n) =

p∑
m=1

χ(m)χ(n)e(m/p).

When n 6≡ 0 mod p, thenm ≡ an mod p has a unique solution a mod p. But then χ(m)χ(n) =
χ(an)χ(n) = χ(a), and e(m/p) = e(an/p). Therefore

p∑
m=1

χ(m)χ(n)e(m/p) =

p∑
a=1

χ(a)e(an/p).

If n ≡ 0 mod p, then the left hand side of (2) is 0 and the right hand side can be computed
(using Remark 3.1)

1

τ(χ)

p∑
a=1

χ(a) =
1

τ(χ)

p∑
a=1

e

(
−aν
p− 1

)
= 0.

We now have all the ingredients to prove the Pólya–Vinogradov inequality.

Theorem 3.6 (Pólya–Vinogradov). If χ is a non-principal Dirichlet character modulo p,
then ∣∣∣∣∣ ∑

H≤n<H+N

χ(n)

∣∣∣∣∣ ≤ √p log p .

Proof. First, observe that

1

p

p−1∑
a=0

e(ax/p)e(−an/p) =

{
1 if x ≡ n mod p

0 otherwise.

Let Fp be the field with p elements {0, 1, 2, . . . , p− 1}. Then∑
H≤n<H+N

χ(n) =
∑
x∈Fp

∑
H≤n<H+N

χ(x)

(
1

p

p−1∑
a=0

e(ax/p)e(−an/p)

)

=
1

p

p−1∑
a=0

∑
x∈Fp

χ(x)e(ax/p)
∑

H≤n<H+N

e(−an/p)

=
1

p

p−1∑
a=0

τa(χ)
∑

H≤n<H+N

e(−a/p)n

=
1

p

p−1∑
a=1

τa(χ)
e(−a(H +N)/p)− e(−aH/p)

1− e(−a/p)
.

Thus ∣∣∣∣∣ ∑
H≤n<H+N

χ(n)

∣∣∣∣∣ ≤ 1

p

p−1∑
a=1

|τa(χ)| 2

|1− e(−a/p)|

≤ 4

p

(p−1)/2∑
a=1

|τa(χ)| 1

|1− e(−a/p)|
.
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We have

|1− e(−a/p)| ≥ 4a

p
,

for a = 1, . . . (p− 1)/2 and we have |τa(χ)| = √p, so∣∣∣∣∣ ∑
H≤n<H+N

χ(n)

∣∣∣∣∣ ≤ √p
(p−1)/2∑
a=1

1

a
.

To conclude the proof, we need only show that
∑(p−1)/2

a=1
1
a
≤ log p. Note that for p = 3, 5, 7,

one can verify this manually.4 For p ≥ 11, we know (p− 1)/2 ≥ 5. Since 1/t is a decreasing
function, for an integer x ≥ 5, we have∑

a≤x

1

a
≤ 1 +

1

2
+

1

3
+

1

4
+

1

5
+

∫ x

5

1

t
dt =

137

60
+ log(x)− log(5).

Therefore
(p−1)/2∑
a=1

1

a
≤ 137

60
+ log (p− 1)− log(2)− log 5 < log p.

4 The Burgess inequality

There are many explicit estimates for the Burgess inequality in the literature. For example,
in [47], Treviño proves

Theorem 4.1. Suppose χ is a non-principal Dirichlet character modulo a prime p ≥ 107.
Let r be a positive integer, and let N and H be integers with H ≥ 1. Then∣∣∣∣∣∣

∑
n∈(N,N+H]

χ(n)

∣∣∣∣∣∣ ≤ 2.74H1− 1
r p

r+1

4r2 (log p)
1
r .

Booker [5] has better constants for quadratic characters under certain restrictions on the
range of H with respect to p. For characters of any order, there is work of McGown [28] and
Treviño [47] that gets explicit estimates for different ranges of H with respect to p where
the estimate gains a power of log p, by getting an exponent of 1/(2r) as opposed to the
exponent of 1/r. Recent work of Kerr, Shparlinski, and Hung Yau [19] is able to improve the
exponent of log p to 1/(4r) but without finding the constants explicitly. More recent work,

by de la Bretèche and Munsch [11], given H ≤ p
1
2
+ 1

4r , improves the exponent of log p further
to (δ0 + o(1))/(2r), where δ0 ≈ 0.16656.

For this paper, we want to show the techniques to prove explicit estimates on the Burgess
inequality without aiming at the best possible constants. To simplify the proof, we have an
exponent of 3/(2r) for log p instead of an exponent of 1/r or 1/(2r).

Our main goal this section will be proving the following explicit Burgess inequality

4The case p = 2 is omitted, since the statement of the theorem is vacuously true; there are no non-principal
characters modulo 2.
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Theorem 4.2. Suppose χ is a non-principal Dirichlet character modulo a prime p ≥ 1011.
Let N,H ∈ Z with H ≥ 1. Fix a positive integer r ≥ 2. Then∣∣∣∣∣∣

∑
n∈(N,N+H]

χ(n)

∣∣∣∣∣∣ < 5H1− 1
r p

r+1

4r2 (log p)
3
2r .

4.1 An important upper bound

To be able to prove Theorem 4.2, we need to get an upper bound on a particular character
sum. To do that, we use the following character sum estimate, first given by Weil as a
consequence of his deep work on the Riemann hypothesis for function fields (see [51]). It is
also proved as Theorem 2C’ in [43] using an elementary method due to Stepanov (see [44]),
which was later extended by both Bombieri (see [4]) and Schmidt (see [42]).

Lemma 4.3. Let χ be a non-principal Dirichlet character to the prime modulus p, having
order n. Let f(x) ∈ Z[x] be a polynomial with m distinct roots which is not an n-th power
in Fp[x], where Fp denotes the finite field with p elements. Then∣∣∣∣∣∣

∑
x∈Fp

χ(f(x))

∣∣∣∣∣∣ ≤ (m− 1) p1/2 .

Let S(χ, h, r) be defined as

S(χ, h, r) =
∑

x mod p

∣∣∣∣∣
h∑
b=1

χ(x+ b)

∣∣∣∣∣
2r

.

We will require bounds which follow from an explicit version of Stirling’s formula (for exam-
ple, see [38]): (

2r

e

)r
<

(2r)!

2rr!
<
√

2

(
2r

e

)r
.

The following Lemma is due to Treviño, building on work of Burgess, Norton, and Booker [48,
47, 6, 8, 36, 5]. Some of the following exposition appears in applications of the lemma
in [32, 27].

Lemma 4.4. Suppose χ is any non-principal Dirichlet character to the prime modulus p. If
r, h ∈ Z+, then

S(χ, h, r) <
(2r)!

2rr!
phr + (2r − 1)p1/2h2r .

Proof. First we claim that we may assume, without loss of generality, that h < p and r <
(e/2)h. We commence by observing that h = p implies S(χ, h, r) = 0, in which case there
is nothing to prove. We see that h > p implies S(χ, h − p, r) = S(χ, h, r), which allows us
to inductively bring h into the range 0 < h < p. Additionally, we notice that if r ≥ (e/2)h,
then the theorem is trivial since in this case we would have

S(χ, h, r) ≤ h2rp ≤
(

2r

e

)r
hrp <

(2r)!

2rr!
hrp .
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This establishes the claim.
Now, to begin the proof proper, we observe that

S(χ, h, r) =
∑

1≤m1,...,m2r≤h

p−1∑
x=0

χ(x+m1) . . . χ(x+mr)χ(x+mr+1) . . . χ(x+m2r) .

Define
M := {m = (m1, . . . ,m2r) | 1 ≤ m1, . . . ,m2r ≤ h} .

We can rewrite the above as

S(χ, h, r) =
∑
m∈M

∑
x∈Fp

χ(fm(x)) ,

where
fm(x) = (x+m1) . . . (x+mr)(x+mr+1)

n−1(x+m2r)
n−1 ,

and n denotes the order of χ. If fm(x) is not an n-th power mod p, then by Lemma 4.4 we
have ∣∣∣∣∣∣

∑
x∈Fp

χ(fm(x))

∣∣∣∣∣∣ ≤ (2r − 1)
√
p .

Otherwise, we employ the trivial bound of p.
It remains to count the number of exceptions – that is, the number of m ∈M such that

fm(x) is an n-th power mod p. If n = 2, it is easy to see that the number of exceptions is
bounded above by (2r− 1)(2r− 3) . . . (3)(1) = (2r)!/(2rr!) simply by pairing each mj with a
duplicate. When n > 2, the counting problem is much more difficult. To avoid this difficulty,
Burgess in [6] counts the number of m = (m1, . . . ,m2r) ∈M such that each mj is repeated
at least once and arrives at the expression (4r)r+1hr.

Treviño in [48] shows that the number of exceptions is bounded above by the quantity

cr(h, n) =

b r
n
c∑

d=0

(
w!

d!(k!)d

)2
hr−(n−2)d

(r − nd)!
;

moreover, under the condition r ≤ 9h, he shows that cr(h, n) is a decreasing function of n
and hence cr(h, n) ≤ cw(h, 2) = (2r)!/(2rr!)hr. But since we have r < (e/2)h in the context
of our proof, this condition is automatic.

4.2 Proof of Theorem 4.2

Throughout this section, χ will denote a Dirichlet character modulo an odd prime p and
N,H will be integers with 0 ≤ N < p and 1 ≤ H < p. The latter assumption is justified
as reducing N and H modulo p leaves the sum in Theorem 4.2 unchanged. Defining the
quantities

Sχ(H) :=
∑

n∈(N,N+H]

χ(n) , E(H) := H1− 1
r p

r+1

4r2 (log p)
3
2r ,

11



we seek a bound of the form Sχ(H) < C E(H), for some constant C.
Fix A ∈ Z with 1 < A < p. For x ∈ Fp, we define νA(x) to be the number of ways we

can write x ≡ an (mod p) , where a ∈ [1, A] is a prime and n ∈ (N,N + H] is an integer.
Here the notation a denotes a multiplicative inverse of a modulo p.

Lemma 4.5. Suppose |Sχ(H0)| ≤ C E(H0) for all H0 < H. Fix H0 = AB < H. Then

|Sχ(H)| ≤ 1

π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣+ 2C E(H0) .

Proof. Applying a shift n 7→ n+ h with 1 ≤ h ≤ H0 gives

Sχ(H) =
∑

n∈(N,N+H]

χ(n+ h) + 2CθE(H0) .

(The letter θ will denote a complex number with |θ| ≤ 1, possibly different each time it
appears.) We set h = ab in the above, and average over all primes a ∈ [1, A] and all integers
b ∈ [1, B]. This gives

Sχ(H) =
1

π(A)B

′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab) + 2CθE(H0) ,

where
∑′ here indicates that we are summing over all primes a ∈ [1, A] and all integers

b ∈ [1, B]. Rearranging the sum in the above expression yields

′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab) =
′∑

1≤a≤A

∑
n∈(N,N+H]

χ(a)
∑

1≤b≤B

χ(an+ b) ,

and hence ∣∣∣∣∣∣
′∑
a,b

∑
n∈(N,N+H]

χ(n+ ab)

∣∣∣∣∣∣ ≤
∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣ .
The result follows.

Lemma 4.6. Suppose a1 6= a2 are prime and b ∈ Z. Then the number of integer solutions
(x, y) ∈ Z2 to the equation a1x− a2y = b with x, y ∈ (N,N +H] is at most

H

max{a1, a2}
+ 1 .

Proof. Let Q denote the number of solutions to a1x−a2y = b with x, y ∈ (N,N+H]. We will
show Q ≤ H/a2 + 1. It will immediately follow from the same argument that Q ≤ H/a1 + 1
as well; indeed, just multiply both sides of the equation by −1 and interchange the roles of x
and y. Suppose we have two solutions (x, y) and (x′, y′). It follows that a1(x−x′) = a2(y−y′),
and since a1 6= a2 are prime, we see that a2 divides x− x′ which implies |x− x′| ≥ a2. Then,
there are at most H/a2 + 1 choices for x, but given x, y is fixed. The result follows.

12



Lemma 4.7. Fix A ∈ Z with 1 < A < p. If 2AH ≤ p, then∑
x∈Fp

νA(x)2 < π(A)H

(
5

3
+

2π(A)

H

)
.

Proof. Define S to be the set of all quadruples (a1, a2, n1, n2) with

a1n2 ≡ a2n1 (mod p),

where a1, a2 ∈ [1, A] are prime and n1, n2 ∈ (N,N + H] are integers. We observe that
#S =

∑
x∈Fp νA(x)2. Suppose (a1, a2, n1, n2) ∈ S with a1 = a2. Then we have n1 ≡ n2

(mod p) and hence n1 = n2 since n1, n2 ∈ (N,N + H] and H ≤ p. Thus there are exactly
π(A)H solutions of this form.

Now we treat the remaining cases. Let (a1, a2, n1, n2) ∈ S with a1 6= a2. Then a1n2 −
a2n1 = kp for some k. It is an exercise to verify that a1 and a2 determine k. Now Lemma 4.6
tells us that there are at most H/max{a1, a2}+ 1 choices of (n1, n2) for each fixed (a1, a2).
Thus the number of elements in S with a1 6= a2 is bounded above by

2
∑
a2≤A
a2 prime

∑
a1<a2
a1 prime

(
H

a2
+ 1

)
< 2H

∑
a≤A

a prime

π(a)− 1

a
+ 2

∑
a≤A

a prime

(π(a)− 1) .

It follows that

∑
x∈Fp

νA(x)2 < π(A)H

(
1 +

2

π(A)

∑
a≤A

π(a)− 1

a
+

2

π(A)H

∑
a≤A

(π(a)− 1)

)
.

Finally we observe ∑
a≤A

a prime

(π(a)− 1) ≤ π(A)2 ,
∑
a≤A
a prime

π(a)− 1

a
<
π(A)

3
.

The second inequality can be confirmed manually for A ≤ 49 and then one can use π(a) < a/3
for a ≥ 50, which follows from (3.6) of [39], namely π(a) ≤ 1.3a/ log a for a > 1. The Lemma
follows.

We are now ready to prove the Burgess inequality.

Proof of Theorem 4.2. We may assume

Crp
1
4
+ 1

4r log p ≤ H ≤ p
1
2
+ 1

4r log p ; (3)

otherwise, the result follows from either |Sχ(H)| ≤ H or |Sχ(H)| ≤ p1/2 log p. We will prove
the result by induction on H. We assume that |Sχ(H0)| ≤ CE(H0) for all H0 < H. We
choose an integer H0 with

H

d+ 1
< H0 ≤

H

d
,

13



for which we can write H0 = AB with A,B ∈ Z+, where

B =

⌈
2

d
p

1
2r (log p)2

⌉
.

Accomplishing this is possible provided H/d−H/(d+1) > B. Assuming d = 10 and p ≥ 1010

we find B > 100 and therefore the desired inequality follows from the estimate

H ≥ (1.01)2(d+ 1)p
1
2r (log p)2 ,

which is implied by
Crp

1
4
− 1

4r ≥ 2.02(d+ 1) log p ;

the latter condition holds upon setting C = 5 and assuming p ≥ 1011. Observe that our
choice of B leads to 2AH < 2H2/(dB) < p. At this point, we give upper and lower bounds
on A. Observe that

A ≤ H

dB
≤ 1

2
p

1
2
− 1

4r (log p)−1 ,

and hence

logA+ 1 ≤ 1

2
log p. (4)

We also have

A >
H

(d+ 1)B
≥ Crd

(2.02)(d+ 1)
p

1
4
− 1

4r (log p)−1 > 10 .

Applying Lemma 4.5 and our inductive hypothesis, we have

|Sχ(H)| ≤ 1

π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣+
2C

d1−
1
r

E(H) . (5)

In order to bound the sum above, we apply Hölder’s inequality to the functions νA(x)1−
1
r ,

νA(x)
1
r , and

∣∣∑
1≤b≤B χ(x+ b)

∣∣ using the Hölder exponents (1− 1/r)−1, 2r, and 2r respec-
tively; this yields:

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
≤

∑
x∈Fp

νA(x)

1− 1
r
∑
x∈Fp

νA(x)2

 1
2r
∑
x∈Fp

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
2r
 1

2r

.

We bound each of the three sums above in turn. Clearly, one has∑
x∈Fp

νA(x) = π(A)H .

We invoke Lemma 4.7 to conclude that∑
x∈Fp

νA(x)2 ≤ 2π(A)H .

14



Indeed, using (3.6) of [39], we have π(A) ≤ 1.3A/ logA for A > 1 and therefore

π(A)

H
≤ 1.3A

H logA
≤ 1.3

dB logA
≤ 1.3

2p
1
2r (log p)2 logA

< 0.1 .

To bound the third sum, we apply Lemma 4.4; this gives

∑
x∈Fp

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣
2r

≤ B2rp1/2
(√

2

(
2r

eB

)r
p1/2 + (2r − 1)

)
≤ 2rB2rp1/2 .

The final inequality follows from
√

2
(
2r
eB

)r
p1/2 ≤ 1 whenever r ≤ 0.1 log2 p. But from (3) we

may assume that r < 1
4

log p ≤ 0.1 log2 p. All together, this gives

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣ ≤ (π(A)H)1−
1
r (2π(A)H)

1
2r

(
2rB2rp1/2

) 1
2r .

Therefore

1

π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣ ≤ (4r)
1
2rH1− 1

r p
1
4r

(
H

π(A)

) 1
2r

.

Using (3.5) of [39] and some simple computation, provided A ≥ 3 and A ∈ Z, we have
π(A) ≥ A/(1 + logA); using this, together with (4), we can estimate

H

π(A)
≤ H(logA+ 1)

A
≤ (d+ 1)B(logA+ 1) ≤ 1.01

d+ 1

d
· p

1
2r (log p)3 .

Therefore (
H

π(A)

) 1
2r

≤
(

1.01
d+ 1

d

) 1
2r

p
1

4r2 (log p)
3
2r ,

which leads to

1

π(A)B

∑
x∈Fp

νA(x)

∣∣∣∣∣ ∑
1≤b≤B

χ(x+ b)

∣∣∣∣∣ ≤
(

4.04 r(d+ 1)

d

) 1
2r

H1− 1
r p

r+1

4r2 (log p)
3
2r .

Finally, using (5), this gives

|Sχ(H)| ≤

[(
4.04 r(d+ 1)

d

) 1
2r

+
2C

d1−
1
r

]
E(H) ≤ C E(H) ,

when C = 5.
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5 Explicit results on the least quadratic non-residue

The inequality np ≤ p
1

4
√
e
+ε

for p large enough (depending on ε), is not explicit, in the sense
that we haven’t mentioned how big p must be depending on the parameter ε. Also, in some
cases we want results that work for all p or for all p ≥ p0 for some manageable p0. In this
section we’ll discuss several explicit results about np.

From Pólya–Vinogradov, we can show the explicit estimate np ≤
√
p log p for all p. As

mentioned in Remark 2.3, one can also show np ≤
√
p + 1 elementarily. But these results

are far from the best asymptotic result. One of the first important explicit estimates was
proved by Norton [36] in 1971. Norton proved

Theorem 5.1 (Norton, 1971). Let p be an odd prime number. Let np be the least quadratic
non-residue modulo p. Then

np ≤

{
3.9p1/4 log p if p ≡ 1 mod 4

4.7p1/4 log p if p ≡ 3 mod 4.

Treviño [48], in 2015, improved this to

Theorem 5.2. Let p be an odd prime number. Let np be the least quadratic non-residue
modulo p. Then

np ≤

{
0.9p1/4 log p if p ≡ 1 mod 4

1.1p1/4 log p if p ≡ 3 mod 4.

The proof of the theorem relied on Lemma 4.4 to get a bound when p ≥ 1060 using
r ≈ log p/4 and h in terms of r. For the “smaller” p, the idea was to use Lemma 4.4,
choosing r and h carefully for different ranges of p.

These estimates are still relatively far from the Burgess estimate of p
1

4
√
e
+ε

. In that
direction, Treviño [47], using an explicit Burgess inequality was able to show

Theorem 5.3. Let p ≥ 104732 be prime. Then

np ≤ p1/6.

The technique of the proof works for any exponent y > 1
4
√
e
. Indeed, we’ll prove the

following theorem

Theorem 5.4. Let p ≥ 1019000 be prime. Then

np ≤ p4/25.

To prove it we will need the following explicit version of the Vinogradov trick (Lemma
5.3 in [47]):

Lemma 5.5. Let x ≥ 286, and let y = x
1√
e
+δ

for some δ > 0. Let χ be a non-principal
character mod p for some prime p. If χ(n) = 1 for all n ≤ y, then∣∣∣∣∣∑

n≤x

χ(n)

∣∣∣∣∣ ≥ x

(
2 log (δ

√
e+ 1)− 1

log2 x
− 1

log2 y
− 1

x

)
.
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Proof of Theorem 5.4. Following the proof of Theorem 1.10 in [47], let χ be the Legendre
symbol modulo p. Then, if n < p and χ(n) 6= 1, n is a quadratic non-residue. Let r be an

integer. Let x ≥ 286 be a real number and let y = x
1√
e
+δ

= p4/25 for some δ > 0. Assume
that χ(n) = 1 for all n ≤ y. Now by Theorem 4.2 and Lemma 5.5 we have

5x1−
1
r p

r+1

4r2 (log p)
3
2r ≥ x

(
2 log (δ

√
e+ 1)− 1

log2 x
− 1

log2 y
− 1

x

)
.

Now, letting x = p
1
4
+ 1

2r we get

5p
3 log log p
2r log p

− 1
4r2 ≥ 2 log (δ

√
e+ 1)− 1

log2 x
− 1

log2 y
− 1

x
. (6)

Picking r = 40, one finds that δ = 0.002993 . . .. For p ≥ 1019000, the right hand side of (6)
is bigger than the left hand side, showing that χ(n) is not always 1 for n ≤ y = p4/25, and
hence the theorem is true.

We can also consider the case when the modulus is not prime. Suppose q is squarefree and
we want to find nq, the least quadratic non-residue modulo q. Granville, Mollin and Williams
[15] proved that nq ≤

√
q/2 for q > 3705. The proof used an explicit Pólya–Vinogradov

inequality and extensive computations on a special sieving computer called Manitoba Scalable
Sieve Unit that calculated bounds up to 1018. Using a “smoothed” version of the Pólya–
Vinogradov inequality (appeared in [23]), Treviño [45] improved this result to show that
nq ≤ q9/20 for q > 1596.

One could also consider the n-th least prime quadratic non-residue qn (the first non-
residue is always prime). Explicit bounds for q2 appear in [31, 24]. Ma, McGown, Rhodes,
and Wanner [27], recently proved that for p ≥ p0, there is a constant C = C(n, p0) depending
on n, p0 such that

qn ≤ Cp
1
4 (log p)

n+1
2 .

In their paper, they calculate C for different values of n and p0. For example if n = 4 and
p0 = 1020, then the constant C = 2.014 suffices.

Another related problem is to bound H(p), the maximum number of consecutive integers

on which the Legendre symbol
(
·
p

)
is constant, i.e.,

H(p) = max
a mod p

{
H :

(
a+ 1

p

)
=

(
a+ 2

p

)
= · · · =

(
a+H

p

)}
.

Using work of Burgess [7], McGown in [30] proved thatH(p) ≤ 7.06p1/4 log p when p ≥ 5·1018,
and H(p) ≤ 7p1/4 log p if p ≥ 1055. Treviño ([46], [49]) improved this to H(p) ≤ 1.55p1/4 log p
when p ≥ 1013 and H(p) ≤ 3.38p1/4 log p for all odd p.

There are some nice results on a lower bound for H(p). In [37], Peralta shows that for
any C < 1

log 4
, there exists a p0 such that for p > p0, H(p) > C log p. In the interest of

getting a clean, explicit lower bound, we prove the following:

Theorem 5.6. Let p > 80000 be prime. Let H(p) be the maximum number of consecutive

integers on which the Legendre symbol
(
·
p

)
is constant. Then

H(p) ≥ 1

2
log p.
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Proof. Let χ(a) =
(
a
p

)
. Note that

χ(a) + 1

2
=


1 if χ(a) = 1

0 if χ(a) = −1
1
2

if χ(a) = 0.

Suppose H ≥ 3, then we have

H∏
i=1

(
χ(a+ i) + 1

2

)
=

{
1 if χ(a+ 1) = χ(a+ 2) = · · · = χ(a+H) = 1

0 otherwise.

Therefore, if

S :=

p−1∑
a=0

H∏
i=1

(
χ(a+ i) + 1

2

)
> 0,

then there exists H consecutive integers that are all quadratic residues. We have

S =
1

2H

∑
a mod p

1 +
2H∑
j=1

χ(pj(a))

 =
1

2H

p+
2H∑
j=1

∑
a mod p

χ(pj(a))

 ,

where, for j ∈ {1, 2, . . . , 2H}, pj(a) is either a polynomial of degree ≤ H or 0. By the Weil
estimates (Lemma 4.4), ∣∣∣∣∣ ∑

a mod p

χ(pj(a))

∣∣∣∣∣ ≤ (H − 1)
√
p.

Therefore

|2HS| ≥ p− 2H(H − 1)
√
p > p− 2HH

√
p. (7)

When H = log p/2 we have

2HH
√
p =

1

2
p

1+log(2)
2 log p.

But the last expression is smaller than p whenever p > 80000. Therefore, S > 0, which implies
that there are at least H consecutive quadratic residues. This means H(p) ≥ 1

2
log p.

Remark 5.7. Note that from (7), we can recover Peralta’s result, namely that given C <
1

log 4
, there is a constant p0 such that for p > p0, H(p) > C log p.

6 The large sieve and Linnik’s theorem

In this section we will sketch a proof of the following beautiful result (see [26]):

Theorem 6.1 (Linnik). Fix ε > 0. Then we have

#{p ≤ N | np > pε} = O(N ε) .
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This result means that the number of exceptions to Vinogradov’s conjecture (that the
least quadratic non-residue np satisfies np � pε) is very small; in particular, the theorem
implies:

Corollary 6.2. The set of primes where Vinogradov’s conjecture fails has density zero.

Linnik introduced the large sieve (see [25]) and it was later studied in detail by Rényi,
Roth, Bombieri, Davenport, Halberstam, Gallagher, and other authors. Our discussion here
is very brief; more detail, including additional references, can be found in [9, 18, 10, 34].

Let {an} be a sequence of complex numbers and consider the trigonometric polynomial

S(α) =
M+N∑
n=M+1

ane(nα) .

Let α1, . . . , αR ∈ R and suppose that ‖αr−αs‖ ≥ δ for r 6= s where ‖θ‖ denotes the distance
to the nearest integer. The large sieve refers to an inequality of the form

R∑
r=1

|S(αr)|2 ≤ ∆(N, δ)
M+N∑
n=M+1

|an|2.

See [34] for a short proof that this holds with ∆ = δ−1 + πN . By taking the αr to be Farey
fractions with denominators up to z, one obtains:

Theorem 6.3 (The Large Sieve inequality). For x, z ∈ Z+ we have

∑
d≤z

∑
1≤a≤d
(a,d)=1

∣∣∣∣∣∑
n≤x

ane
(na
d

)∣∣∣∣∣
2

≤ (z2 + πx)
∑
n≤x

|an|2 .

One can obtain a sieve out of the previous theorem by the use of so-called Ramanujan
sums

∑
a≤a≤d
(a,d)=1

e(na/d). See [9] for the details.

Theorem 6.4. Let A be a positive integers n ≤ x and let P be a set of primes. For each
p ∈ P, suppose we are given a set Ωp = {w1,p, . . . , wω(p),p} of ω(p) residue classes modulo p.
Let z > 0, P (z) the product of the primes p ∈ P, p < z, and set

S(A,P , z) := #{n ∈ A | n 6≡ wi,p mod p, ∀p|P (z)} .

We have

S(A,P , z) ≤ z2 + πx

L(z)
,

where

L(z) :=
∑
d≤z

µ2(d)
∏
p|d

ω(p)

p− ω(p)
.
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Remark 6.5. In applications, one needs a lower bound on L(z). Often the following estimate
suffices:

L(z) ≥
∑
p<z

ω(p)

p− ω(p)
.

The final ingredient we need before proving Linnik’s theorem is a lower bound on the
numbers of integers up to x with only small prime factors. A number n is y-smooth if all of
its prime factors are ≤ y. The counting function for all y-smooth numbers up to x is defined
as

ψ(x, y) := #{n ≤ x | all the prime factors of n are ≤ y} .

The following is a well-known lower bound on ψ(x, y). The proof we give is suggested in
Exercise #12 from Chapter 4 of [9].

Lemma 6.6. For every ε > 0, there is a constant cε > 0 such that for x sufficiently large
we have

ψ(x, xε) ≥ cε x .

Proof. Fix ε > 0. We consider numbers of the form n = mp1 p2 . . . pk for k = [ε−1] where
xε−ε

2
< pj < xε. We set α = ε− ε2 and β = ε and estimate:∑

xα≤p1,...,pk≤xβ

[
x

p1 . . . pk

]
�

∑
xα≤p1,...,pk≤xβ

x

p1 . . . pk

= x

 ∑
xα≤p≤xβ

1

p

k

� x

(
log

(
β

α

))k
.

Proof of Theorem 6.1. Fix ε > 0. Let A = Z+, z = N , x = N2,

P = {p | np > pε , p ∈ [N ε, N ]} ,

Ωp = {ν | (ν/p) = −1} .

Using the Large Sieve, we have:

S = S(A,P , z) ≤ 5N2

L(z)
.

We also have

L(z) ≥
∑
p<z

ω(p)

p− ω(p)
≥ 1

3
#{p ∈ P | p ≤ N}.

Consider S ′ = {n ≤ N2 | n has no prime divisors larger than N ε2}. We claim that S ′ ⊆ S.
Let n ∈ S ′. Let p ∈ P . For any prime q dividing n, we have that q < N ε2 < pε and therefore
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(q/p) = 1. It follows that n ∈ S. By Lemma 6.6 we have #S ′ ≥ dεN
2 for some dε > 0. This

implies

dεN
2 ≤ 5N2

L(z)
≤ 15N2

#{p ∈ P | p ≤ N}
,

and hence

#{p ∈ P | p ≤ N} ≤ 15

dε
.

Now we achieve our desired estimate; namely,

{p ≤ N | np > pε} ≤ π(N ε) +
15

dε
= O(N ε).

7 Ankeny’s Theorem

Recall that Ankeny [1] proved np ≤ C(log p)2 for some constant C > 0 under the assumption
of the Generalized Riemann Hypothesis (GRH). In particular, this says that the GRH implies
Vinogradov’s conjecture. Bach [3] proved np ≤ 2(log p)2. The main idea behind Bach’s proof
appears in [33], but to obtain explicit results there are many details to work out; Bach uses
a slightly different kernel and introduces a parameter in order to achieve good numerical
results. Later, Lamzouri, Li, and Soundararajan [21] prove that np ≤ (log p)2.

Our goal here is prove an explicit version of Ankeny’s Theorem without too much effort.
We follow Bach’s approach in [3] as well as some of the exposition given in [29]. For ease of
exposition, we make the simplifying assumption that χ(−1) = 1. (The same approach still
works when χ(−1) = −1 but the functional equation for L(s, χ) takes a slightly different
form.)

Let nχ denote the least positive integer n for which χ(n) 6= 1. Notice that when χ(n) =
(n/p), the Legendre symbol, one has nχ = np. We prove the following:

Theorem 7.1. Let χ be a non-principal Dirichlet character modulo m ≥ 109 with χ(−1) = 1.
Assume the RH and the GRH for L(s, χ). Then nχ < 2(logm)2.

Lemma 7.2. Let χ be a Dirichlet character modulo m. (Here we allow the possibility that
χ is the principal character or even that m = 1.) For x > 1 and a ∈ (0, 1), we have

− 1

2πi

∫ 2+i∞

2−i∞

xs

(s+ a)2
L′(s, χ)

L(s, χ)
ds =

∑
n<x

χ(n)Λ(n)(n/x)a log(x/n) .

Proof. First, substitute the Dirichlet series

L′(s, χ)

L(s, χ)
= −

∞∑
n=1

χ(n)Λ(n)n−s

into the left-hand side above and interchange the order of summation and integration. Next,
use the fact that for y > 0 one has

1

2πi

∫ 2+i∞

2−i∞

ys

(s+ a)2
ds =

{
y−a log y if y > 1

0 otherwise .
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Lemma 7.3. Let χ be a non-principal Dirichlet character modulo m with χ(−1) = 1. For
a ∈ (0, 1) and x > 0 we have

x

(a+ 1)2
+

1

a2
=

∑
ρ of ζ

xρ

(ρ+ a)2
−

∑
ρ of Lχ

xρ

(ρ+ a)2

+
∑
n < x

χ(n) 6= 1

(1− χ(n))Λ(n)(n/x)a log(x/n)

+
log x

xa

[(
ζ ′

ζ

)
(−a)−

(
L′χ
Lχ

)
(−a)

]
+

1

xa

[(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

]
.

Proof. Evaluate the integral in Lemma 7.2 using the Residue Theorem to obtain:∑
n<x

χ(n)Λ(n)(n/x)a log(x/n) = −
∑
ρ of Lχ

xρ

(ρ+ a)2
−
∞∑
n=1

x−2n

(a− 2n)2
− 1

a2

− log x

xa

(
L′χ
Lχ

)
(−a)− 1

xa

(
L′χ
Lχ

)′
(−a) ,

∑
n<x

Λ(n)(n/x)a log(x/n) =
x

(a+ 1)2
−
∑
ρ of ζ

xρ

(ρ+ a)2
−
∞∑
n=1

x−2n

(a− 2n)2

− log x

xa

(
ζ ′

ζ

)
(−a)− 1

xa

(
ζ ′

ζ

)′
(−a) .

Subtracting these two equations gives the result.

Define

ψQ(s) =
1

2

(
ψ
(s

2

)
− log π

)
.

In order to expedite the proofs in the rest of this section, we quote some formulae, all of
which can be derived from (5.9) of [20]. For all s ∈ C, we have:

ζ ′(s)

ζ(s)
= B +

∑
ρ of ζ

(
1

s− ρ
+

1

ρ

)
− 1

s
− 1

s− 1
− ψQ(s). (8)

If χ is a non-principal primitive Dirichlet character modulo f , with χ(−1) = 1, then for all
s ∈ C we have:

L′(s, χ)

L(s, χ)
= Bχ +

∑
ρ of Lχ

(
1

s− ρ
+

1

ρ

)
− 1

2
log f − ψQ(s). (9)
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Each sum above is over the non-trivial zeros ρ of the corresponding functions, and is abso-
lutely and uniformly convergent on compact subsets of C. Henceforth we adopt the notation
that ρ will always denote a non-trivial zero with 0 < <(ρ) < 1.

Each of (8), (9) involves a constant B which can be difficult to estimate. Fortunately, in
both cases this constant can be eliminated from the equation as follows. Provided the sum
is taken in symmetric order5, one has B +

∑
ρ of ζ ρ

−1 = 0, and similarly for Bχ. See [10]
for a simple argument which gives this result for the constant B. The analogous result for
Bχ is not obvious; in fact, it was not known until the introduction of the Weil formulas
(see [52, 53]). Plugging s = 1 into (9) and comparing against (2.3.1) of [17] gives a proof of
this result.

Lemma 7.4. Let χ be a non-principal primitive Dirichlet character modulo f with χ(−1) =
1. Assume the RH and the GRH for L(s, χ). For a ∈ (0, 1) we have∑

ρ of ζ, Lχ

1

|ρ+ a|2
≤ 1

2a+ 1

(
log f + 2

(
1

a+ 1
+

1

a

)
+ 4ψQ(a+ 1)

)
.

Proof. Substitute s = σ into (9), add the result to its conjugate, and use the fact that the
real part of Bχ +

∑
ρ ρ
−1 equals 0 to obtain∑

ρ of Lχ

(
1

σ − ρ
+

1

σ − ρ

)
= log f + 2<L

′(σ, χ)

L(σ, χ)
+ 2ψQ(σ) .

This equation goes back to Landau (see [22]). In exactly the same manner, one can show∑
ρ of ζ

(
1

σ − ρ
+

1

σ − ρ

)
= 2

ζ ′(σ)

ζ(σ)
+ 2

(
1

σ
+

1

σ − 1

)
+ 2ψQ(σ).

Setting σ = a+ 1 and supposing that <(ρ) = 1/2, we find:

1

|ρ+ a|2
=

1

2a+ 1

(
1

σ − ρ
+

1

σ − ρ

)
.

To complete the proof, we combine everything above and note that

ζ ′(σ)

ζ(σ)
+ <L

′(σ, χ)

L(σ, χ)
< 0 ,

by considering the Dirichlet series for (ζ ′/ζ + L′χ/Lχ)(s).

Lemma 7.5. Let χ be a non-principal primitive Dirichlet character modulo f with χ(−1) = 1.
For a ∈ (0, 1) we have∣∣∣∣(ζ ′ζ

)
(−a)−

(
L′χ
Lχ

)
(−a)

∣∣∣∣
≤ (a+ 2)

∑
ρ of ζ, Lχ

1

|(ρ+ a)(2− ρ)|
+ 2

∣∣∣∣ζ ′(2)

ζ(2)

∣∣∣∣+
1

a
+

1

a+ 1
+

3

2
.

5Taking the sum in symmetric order means:
∑
ρ

= lim
T→∞

∑
ρ=σ+it
|t|<T
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Proof. We begin with the following formulas which hold for all s ∈ C, provided the sums are
taken in symmetric order:(

ζ ′

ζ

)
(s) =

∑
ρ of ζ

1

s− ρ
− 1

s
− 1

s− 1
− ψQ(s), (10)(

L′χ
Lχ

)
(s) =

∑
ρ of Lχ

1

s− ρ
− 1

2
log f − ψQ(s). (11)

Formulas (10) and (11) are obtained from (8) and (9) respectively by applying the facts∑
ρ of ζ ρ

−1 +B = 0 and
∑

ρ of Lχ
ρ−1 +Bχ = 0. Plugging s = 2 into (10) and subtracting it

from itself, and similarly for (11), yields:(
ζ ′

ζ

)
(s) =

(
ζ ′

ζ

)
(2) +

∑
ρ

(
1

s− ρ
− 1

2− ρ

)
+

3

2
− 1

s
− 1

s− 1
+ ψQ(2)− ψQ(s),(

L′χ
Lχ

)
(s) =

(
L′χ
Lχ

)
(2) +

∑
ρ

(
1

s− ρ
− 1

2− ρ

)
+ ψQ(2)− ψQ(s).

Using the above, together with the fact

1

−a− ρ
− 1

2− ρ
= − a+ 2

(ρ+ a)(2− ρ)
,

we can write(
ζ ′

ζ

)
(−a)−

(
L′χ
Lχ

)
(−a) = (a+ 2)

 ∑
ρ of Lχ

1

(ρ+ a)(2− ρ)
−
∑
ρ of ζ

1

(ρ+ a)(2− ρ)


+

(
ζ ′

ζ

)
(2)−

(
L′χ
Lχ

)
(2) +

3

2
+

1

a
+

1

a+ 1
.

The result follows upon taking absolute values and using the fact that
∣∣(L′χ/Lχ) (2)

∣∣ ≤
|(ζ ′/ζ) (2)|.

In applying the previous lemma, it will be helpful to note that when <(ρ) = 1/2, one has
|ρ+ a|2 ≤ |(ρ+ a)(2− ρ)|.

Lemma 7.6. Let χ be a non-principal primitive Dirichlet character modulo f with χ(−1) = 1.
For a ∈ (0, 1) we have∣∣∣∣∣

(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

∣∣∣∣∣ < ∑
ρ of ζ, Lχ

1

|ρ+ a|2
+

1

a2
+

1

(a+ 1)2
.
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Proof. We start by differentiating (10) and (11); this gives(
ζ ′

ζ

)′
(s) = −

∑
ρ of ζ

1

(s− ρ)2
+

1

s2
+

1

(s− 1)2
− ψ′Q(s), (12)

(
L′χ
Lχ

)′
(s) = −

∑
ρ of Lχ

1

(s− ρ)2
− ψ′Q(s) , (13)

which allows us to write(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

=
∑

ρ of Lχ

1

(ρ+ a)2
−
∑
ρ of ζ

1

(ρ+ a)2
+

1

a2
+

1

(a+ 1)2
.

The result follows.

Proposition 7.7. Let χ be a non-principal primitive Dirichlet character modulo f with
χ(−1) = 1. Assume the RH and the GRH for L(s, χ). We define∑

ρ

:=
∑

ρ of ζ, Lχ

1

|ρ+ a|2
.

For x > 0 we have

x

(a+ 1)2
+

1

a2
≤
√
x
∑
ρ

+ 2
∑
n < x

χ(n) 6= 1

Λ(n)(n/x)a log(x/n)

+
log x

xa

(
(a+ 2)

∑
ρ

+ 2

∣∣∣∣ζ ′(2)

ζ(2)

∣∣∣∣+
1

a
+

1

a+ 1
+

3

2

)

+
1

xa

(∑
ρ

+
1

a2
+

1

(a+ 1)2

)
.

Proof. Combine Lemmas 7.3, 7.5, and 7.6.

Proof of Theorem 7.1. The result for a general character follows from the corresponding
result for primitive characters and hence we may assume χ is a primitive character modulo
f . Define x := 2(log f)2. Since f ≥ 109, we have x > 858. By way of contradiction, suppose
that χ(n) = 1 for all n < x.

Apply Proposition 7.7 and set a = 1/2. We find

x

9/4
+ 4 ≤

√
x
∑
ρ

+ 2
∑
n < x

χ(n) 6= 1

Λ(n)(n/x)1/2 log(x/n)

+
log x√
x

(
5

2

∑
ρ

+ 2

∣∣∣∣ζ ′(2)

ζ(2)

∣∣∣∣+
25

6

)
+

1√
x

(∑
ρ

+
40

9

)
,
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where ζ ′(2)/ζ(2) ≈ −0.56996. Apply Lemma 7.4, together with the fact ψQ(3/2) ≈ −1.1153,
to obtain ∑

ρ of ζ, Lχ

1∣∣ρ+ 1
2

∣∣2 ≤ 1

2
log f + 0.437 .

This ultimately leads to
√
x < 1.2 log f which implies x < 1.5(log f)2, a contradiction.

8 Conclusion

We have surveyed some classical results concerning the least quadratic non-residue np. Al-
though asking about the size of np seems like an innocent question, it has been studied via
many different techniques. The proof of the Polya–Vinogradov inequality in section 3 has
a Fourier-analytic flavor, a deep theorem from algebraic geometry is employed to prove the
Burgess inequality in section 4, we have the large sieve in section 6 which can be couched
in terms of functional analysis, and we have complex analysis and use of the Generalized
Riemann Hypothesis in section 7. We have also showcased the techniques that one can use
to get some explicit results by showing how to recover constants in most of the sections.
Despite how well-studied this problem is, we are still far from proving (unconditional) upper
bounds that are anywhere close to the truth. We hope that this survey has given the reader
an idea of what is known and not known about the least quadratic non-residue.
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