The least quadratic non-residue and related problems

Enrique Treviño

Swarthmore College
March 1st, 2011

Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

```
- 4+7=11
- 4+8=12
- 4+9=1
- 4+9 \equiv1(mod 12)
- a\equivb(mod n)
```


Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4+7=11$
- $4+8=12$
- $4+9=1$
- $4+9 \equiv 1(\bmod 12)$
- $a \equiv b(\bmod n)$

Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be $12: 30 \mathrm{am}$, but in 9 it will be 1:30 am.

- $4+7=11$
- $4+8=12$
- $4+9=1$
- $4+9 \equiv 1(\bmod 12)$
- $a \equiv b(\bmod n)$

Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4+7=11$
- $4+8=12$
- $4+9=1$
- $4+9 \equiv 1(\bmod 12)$
- $a \equiv b(\bmod n)$

Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4+7=11$
- $4+8=12$
- $4+9=1$
- $4+9 \equiv 1(\bmod 12)$
- $a \equiv b(\bmod n)$

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days .
- 132/4 = 33 "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14-1 days between March 14 and March 1, so - 13 days.
- Total Days Ago: $48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- 132/4 = 33 "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14 - 1 days between March 14 and March 1, so - 13 days.
- Total Days Ago:
$48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- $132 / 4=33$ "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14 - 1 days between March 14 and March 1, so - 13 days.
- Total Days Ago:
$48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- 365

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- 132/4 = 33 "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14-1 days between March 14 and March 1, so - 13 days.
- Total Days Ago: $48180+33-1-13=48199=4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- 365 $132+33$ $6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- $132 / 4=33$ "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14-1 days between March 14 and March 1, so - 13 days.
- Total Days Ago: $48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- $132 / 4=33$ "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14 - 1 days between March 14 and March 1, so -13 days.
- Total Days Ago: $48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- 132/4 = 33 "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14 - 1 days between March 14 and March 1, so -13 days.
- Total Days Ago: $48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Einstein's Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365=48180$ days.
- $132 / 4=33$ "leap years", hence 33 more days.
- 1900 was not a "leap year" hence - 1 day.
- 14 - 1 days between March 14 and March 1, so -13 days.
- Total Days Ago: $48180+33-1-13=48199 \equiv 4(\bmod 7)$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132+33-1-13 \equiv 1 \times 6+19=25 \equiv 4(\bmod 7)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares and non-squares

Let n be a positive integer. For $q \in\{0,1,2, \ldots, n-1\}$, we call q a square $\bmod n$ if there exists an integer x such that $x^{2} \equiv q$ $(\bmod n)$. Otherwise we call q a non-square.

- For $n=3$, the squares are $\{0,1\}$ and the non-square is 2 .
- For $n=5$, the squares are $\{0,1,4\}$ and the non-squares are $\{2,3\}$.
- For $n=7$, the squares are $\{0,1,2,4\}$ and the non-squares are $\{3,5,6\}$.
- For $n=p$, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{x}{4}$
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{x}{2^{k}}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{x}{2^{k}}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{x}{4}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{x}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{x}{2^{k}}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least
non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{x}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{x}{2^{k}}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least non-square $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{x}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{x}{2^{k}}$.
- If $k=\log x / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$, so if k is a bit bigger, then you wouldn't expect a prime with such a "large" least non-square.
- Then we want $k \approx C \log x$, and since $p_{k} \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Theorems on the least non-square $\bmod p$

Let $g(p)$ be the least non-square $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(n)$
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least non-square $\bmod p$

Let $g(p)$ be the least non-square $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p)<_{\epsilon} p^{\frac{p^{4 \sqrt{e}}}{}+\epsilon}$.
$-\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least non-square $\bmod p$

Let $g(p)$ be the least non-square $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least non-square $\bmod p$

Let $g(p)$ be the least non-square $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$
g(p)=\Omega(\log p \log \log \log p)
$$

Explicit estimates on the least non-square $\bmod p$

Norton showed

$$
g(p) \leq\left\{\begin{array}{lll}
3.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
4.7 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Theorem (ET 2011)

Let $n>3$ be a prime. Let $g(p)$ be the least non-square modp.
Then
$\left\{\begin{array}{lll}0.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4), \\ 1.2 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4) .\end{array}\right.$

Explicit estimates on the least non-square modp

Norton showed

$$
g(p) \leq\left\{\begin{array}{lll}
3.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
4.7 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Theorem (ET 2011)

Let $p>3$ be a prime. Let $g(p)$ be the least non-square $\bmod p$. Then

$$
g(p) \leq\left\{\begin{array}{lll}
0.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
1.2 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Quadratic fields and inert primes

- Let d be a squarefree integer.
- Then $\mathbb{Q}(\sqrt{d})$ is a quadratic field.
- A prime $p \in \mathbb{Z}$ is inert if it remains prime when it is lifted to the quadratic field.
- For example $\mathbb{Q}(\sqrt{-1})=\mathbb{Q}(i)=\{a+b i \mid a, b \in \mathbb{Q}\}$. In this field, the inert primes are the primes $p \equiv 3(\bmod 4)$.
- Note that 5 is not prime in $\mathbb{Q}(i)$ because $(1+2 i)(1-2 i)=5$. Similarly any prime $p \equiv 1(\bmod 4)$ is not prime in $\mathbb{Q}(i)$ since p can be written as $a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$ and hence $p=(a+b i)(a-b i)$.

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ $(\bmod 4)$ and $4 d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D / p)=-1$
- The Kronecker symbol is a generalization of the Legendre symbol

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ $(\bmod 4)$ and $4 d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker $\operatorname{symbol}(D / p)=-1$.
- The Kronecker symbol is a generalization of the Legendre symbol

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ (mod 4) and 4d otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D / p)=-1$.
- The Kronecker symbol is a generalization of the Legendre symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cc}
1 & \text { if } a \text { is a square } \bmod p \\
-1 & \text { if } a \text { is a non-square } \bmod p \\
0 & \text { if } p \mid a
\end{array}\right.
$$

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D>3705$, there is always at least one prime $p \leq \sqrt{D} / 2$ such that the Kronecker symbol $(D / p)=-1$.

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D>3705$, there is always at least one prime $p \leq \sqrt{D} / 2$ such that the Kronecker symbol $(D / p)=-1$.

Theorem (ET, 2010)

For any positive fundamental discriminant $D>1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker symbol $(D / p)=-1$.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

Manitoba Scalable Sieving Unit

Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three conditions are satisfied:

```
- }\chi(a+n)=\chi(a) for all a\in\mathbb{Z
- \chi(ab)=\chi(a)\chi(b) for all }a,b\in\mathbb{Z}\mathrm{ .
- }\chi(a)=0\mathrm{ if and only if gcd (a,n)>1
Examples of Dirichlet characters are the Legendre
symbol and the Kronecker symbol.
```


Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a \in \mathbb{Z}$.

$$
\begin{aligned}
-\chi(a b)= & \chi(a) \chi(b) \text { for all } a, b \in \mathbb{Z} \\
& \chi(a)= \\
& \text { if and only if gcd }(a, n)>1 . \\
& \text { Examples of Dirichlet characters are the Legendre } \\
& \text { symbol and the Kronecker symbol. }
\end{aligned}
$$

Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(a b)=\chi(a) \chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a)=0$ if and only if $\operatorname{gcd}(a, n)>1$

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.

Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(a b)=\chi(a) \chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a)=0$ if and only if $\operatorname{gcd}(a, n)>1$.

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.

Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three
conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(a b)=\chi(a) \chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a)=0$ if and only if $\operatorname{gcd}(a, n)>1$.

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus $q>1$. Let

$$
S(\chi)=\max _{M, N}\left|\sum_{n=M+1}^{M+N} \chi(n)\right|
$$

The Pólya-Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \leq c \sqrt{q} \log q$.
Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Explicit Pólya-Vinogradov

Theorem (Hildebrand, 1988)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\left(\frac{2}{3 \pi^{2}}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { even, } \\ \left(\frac{1}{3 \pi}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { odd. }\end{cases}
$$

Theorem (Pomerance, 2009)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\frac{2}{\pi^{2}} \sqrt{q} \log q+\frac{4}{\pi^{2}} \sqrt{q} \log \log q+\frac{3}{2} \sqrt{q} & , \quad \chi \text { even }, \\ \frac{1}{2 \pi} \sqrt{q} \log q+\frac{1}{\pi} \sqrt{q} \log \log q+\sqrt{q} & , \quad \chi \text { odd } .\end{cases}
$$

Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{70}$
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{70}$
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{70}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ (mod p).

Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $>10^{70}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Smoothed Pólya-Vinogradov

Let M, N be real numbers with $0<N \leq q$, then define $S^{*}(\chi)$ as follows:

$$
S^{*}(\chi)=\max _{M, N}\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{a-M}{N}-1\right|\right)\right| .
$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \leq \sqrt{q}-\frac{N}{\sqrt{q}} .
$$

Lower bound for the smoothed Pólya-Vinogradov

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \geq \frac{2}{\pi^{2}} \sqrt{q} .
$$

Therefore, the order of magnitude of $S^{*}(\chi)$ is \sqrt{q}.

Tighter smoothed PV

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, let M, N be real numbers with $0<N \leq q$. Then

$$
\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right| \leq \frac{\phi(q)}{q} \sqrt{q}+2^{\omega(q)-1} \frac{N}{\sqrt{q}} .
$$

Applying smoothed PV to the least inert prime problem

Let $\chi(p)=\left(\frac{D}{p}\right)$. Since D is a fundamental discriminant, χ is a primitive character of modulus D. Consider

$$
S_{\chi}(N)=\sum_{n \leq 2 N} \chi(n)\left(1-\left|\frac{n}{N}-1\right|\right) .
$$

By smoothed PV, we have

$$
\left|S_{\chi}(N)\right| \leq \frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} .
$$

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{N} \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

- Now, letting $N=c \sqrt{D}$ for some constant c we get

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{N} \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

$$
\frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N-2^{\omega(D)-2}-2 \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

- Now, letting $N=c \sqrt{D}$ for some constant c we get

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

$$
\frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N-2^{\omega(D)-2}-2 \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

- Now, letting $N=c \sqrt{D}$ for some constant c we get

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

Eventually we have,

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2 c}{\log B} e^{\gamma}\left(1+\frac{1}{\log ^{2}\left(\frac{2 N}{B}\right)}\right) \log \left(\frac{2 N}{B}\right) \prod_{\substack{\left.p>\frac{2 N}{} \\ p \right\rvert\, D}} \frac{p}{p-1} .
$$

For $D \geq 10^{24}$ this is a contradiction.

Hybrid Case

We have as in the previous case

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

In this case, since we don't have to worry about the infinite case, we can have a messier version of

$$
\sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

The idea is to consider 2^{13} cases, one for each possible value of $\operatorname{gcd}(D, M)$ where $M=\prod_{p \leq 41} p$.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71$
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

Future Work

- Bringing the upper bound further down.
- Generalizing to D's not necessarily fundamental discriminants.
- Generalizing to other characters, not just the Kronecker symbol.
- Improving McGown's result on norm euclidean cubic fields.

