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Abstract

Character sums make their appearance in many number theory problems: showing

that there are infinitely many primes in any coprime arithmetic progression, estimat-

ing the least quadratic non-residue, bounding the least primitive root, finding the size

of the least inert prime in a real quadratic field, etc. In this thesis, we find numerically

explicit estimates for character sums and give applications to some of these questions.

Granville, Mollin and Williams proved that the least inert prime q for a real

quadratic field of discriminant D such that D > 3705 satisfies q ≤
√
D/2. Using a

smoothed version of the Pólya–Vinogradov inequality (an explicit bound on character

sums) and explicit estimates on the sum of primes, we improve the bound on q to

D0.45 for D > 1596.

Let χ be a non-principal Dirichlet character mod p for a prime p. Using combi-

natorial methods, we improve an inequality of Burgess for the double sum

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

.

Using this inequality, we prove that for a prime p with k | p− 1, the least k-th power

non-residue modp is smaller than 0.9p1/4 log p unless k = 2 and p ≡ 3 (mod 4),

in which case, the least k-th power non-residue is smaller than 1.1p1/4 log p. This
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improves a result of Norton which has the coefficients 3.9 and 4.7 in the two cases,

respectively. We also prove that the length H of the longest interval on which χ is

constant is smaller than 3.64p1/4 log p and if p ≥ 2.5 · 109, then H ≤ 1.55p1/4 log p.

This improves a result of McGown which had for p ≥ 5 · 1018 that H ≤ 7.06p1/4 log p,

and for p ≥ 5 · 1055 that H ≤ 7p1/4 log p.

The purpose of this thesis is to work out the best explicit estimates we can and

to have them as tools for other mathematicians.
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Chapter 1

Introduction

Let n be a positive integer. For q ∈ {0, 1, 2, . . . , n− 1}, we call q a quadratic residue

mod n if there exists an integer x such that x2 ≡ q (mod n). Otherwise we call q a

quadratic non-residue. Let g(p) be the least quadratic non-residue mod p for p prime.

How big can g(p) be?

• For the least quadratic non-residue to be greater than 2 we need 2 to be a

quadratic residue; therefore p ≡ ±1 (mod 8), hence p = 7 is the first example.

• For the least quadratic non-residue to be greater than 3 we need 2 and 3 to be

quadratic residues, therefore p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12); therefore

p ≡ ±1 (mod 24), giving us p = 23 as the first example.

• For the least quadratic non-residue to be greater than 5 we need 2, 3 and 5

to be quadratic residues, therefore p ≡ ±1 (mod 8), p ≡ ±1 (mod 12) and

p ≡ ±1 (mod 5); therefore p ≡ ±1,±49 (mod 120), giving us p = 71 as the

first example.

1



Introduction

Note that the sizes of the primes are growing fast, suggesting that g(p) is much

smaller than p. The following heuristic suggests that g(p) = O(log p log log p) and

that this is best possible up to a constant, i.e., g(p) = Ω(log p log log p).

Let pi be the i-th prime, i.e., p1 = 2, p2 = 3, . . .. Then

• #{p ≤ x | g(p) = 2} ≈ π(x)
2
,

• #{p ≤ x | g(p) = 3} ≈ π(x)
4

and hence

• #{p ≤ x | g(p) = pk} ≈ π(x)
2k
.

Therefore, if k = log (π(x))
log 2

∼ log x−log log x
log 2

, one would expect only one prime satisfy-

ing g(p) = pk, so if k is a bit bigger, then one would not expect a prime with such a

“large” least non-square. Therefore we want k ≈ C log x. Since pk ∼ k log k, we have

g(x) ≈ C log x log log x.

Ankeny showed [1] that g(p) = O(log2 p) assuming the Extended Riemann Hy-

pothesis (ERH). Bach was able to make this explicit in [2], proving that g(p) ≤ 2 log2 p

assuming ERH. However, the best unconditional results are much worse. We know

from work of Burgess and Vinogradov that for ε > 0, g(p)�ε p
1

4
√
e

+ε
. Explicitly, the

best known result was due to Norton [31], who proved that

g(p) ≤


3.9p1/4 log p if p ≡ 1 (mod 4),

4.7p1/4 log p if p ≡ 3 (mod 4).

In Chapter 4, we prove

2



Introduction

Theorem 1.1. Let p be an odd prime. Then

g(p) ≤


0.9p1/4 log p if p ≡ 1 (mod 4),

1.1p1/4 log p if p ≡ 3 (mod 4).

The theorem (as well as Norton’s result) actually goes a little further, bounding

g(p, k) := the least k-th power non-residue. The technique used to bound g(p) is to

estimate character sums. While these estimates are interesting in their own right,

they also are very useful to answer some questions from elementary number theory.

Another example is bounding the least inert prime in a real quadratic field.

Let’s give some background on character sums. For n a positive integer, a Dirichlet

character χ mod n is a function χ : Z → C that satisfies that for any a ∈ Z,

χ(a+n) = χ(a) (periodic), also for any b ∈ Z we have χ(ab) = χ(a)χ(b) (this property

is called being totally multiplicative) and that χ(a) = 0 if and only if gcd(a, n) > 1.

Dirichlet characters are very important in analytic number theory; one application is

in the proof that there are infinitely many primes in any arithmetic progression ax+b

as long as gcd(a, b) = 1. This proof depends on the fact that L(1, χ) =
∞∑
n=1

χ(n)

n
6= 0

for any non-principal character χ (principal character mod q means χ(a) = 1 for all

integers a such that gcd(a, q) = 1). From now on, Dirichlet characters will be referred

to as characters.

Let χ be a character mod q and let M and N be non-negative reals with N ≥ 1.

Consider

Sχ(M,N) =
∑

M<n≤M+N

χ(n).

3



Introduction

Notice that if M = 0 then Sχ(M,N) is the sum of χ evaluated at the first N integers

and that by estimating this sum, using partial summation, we can estimate L(1, χ).

Hence, bounds on Sχ(M,N) are important.

The first important upper bound on Sχ(M,N) came in 1918 in what we now call

the Pólya–Vinogradov inequality (proven independently). The inequality states that

there is a universal constant c such that for χ a non-principal Dirichlet character to

the modulus q, |Sχ(M,N)| ≤ c
√
q log q. Note that, surprisingly, the upper bound does

not depend on N , it only depends on the modulus of the character. It is important to

note that from the definition of a Dirichlet character it is easy to see that |χ(n)| = 1

or χ(n) = 0. From this it is trivial to see that |Sχ(M,N)| ≤ N . Now if N is small

compared to
√
q then Pólya–Vinogradov is not an improvement on the trivial bound.

A character with modulus n is induced (or not primitive) if it is the product of

a character with a modulus which is a proper divisor of n with a principal character

with modulus n; otherwise it is primitive. Mathematicians have worked out explicit

estimates for the Pólya–Vinogradov inequality, i.e., finding an upper bound for the

universal constant c. For example, Pomerance proved the following theorem in the

case of primitive characters [36]

Theorem 1.2. For χ a primitive character to the modulus q > 1, we have

|Sχ(M,N)| ≤


2

π2

√
q log q +

4

π2

√
q log log q +

3

2

√
q , χ(−1) = 1,

1

2π

√
q log q +

1

π

√
q log log q +

√
q , χ(−1) = −1.

An immediate application of the Pólya–Vinogradov inequality is to put an upper

bound on g(p) with p prime. The reason we can do this is that the function that

gives 1 if it is a quadratic residue, −1 if it is not a quadratic residue and 0 if the

4



Introduction

number is not coprime to the modulus is a Dirichlet character mod p (this function

is written
(
·
p

)
and it is called the Legendre symbol). If we show that the sum of these

character values is small compared to the number of things we summed, it means that

χ must have been −1 at some point, giving us a quadratic non-residue. Using the

Pólya–Vinogradov inequality and a bit of sieving (known as the Vinogradov trick in

this context) we can get that the least quadratic non-residue is bounded by p
1

2
√
e

+ε
for

large enough p depending on the choice of ε, a positive real number. As mentioned

earlier, we conjecture that the least quadratic non-residue is much smaller than that.

Despite the Pólya–Vinogradov inequality not being able to yield a better result

with respect to g(p), the Pólya–Vinogradov inequality is relatively sharp. Indeed,

there exist real numbers M and N such that Sχ(M,N) � √q. In a sense, the in-

equality is only “off” by log q. In this direction there are other nice results. For

instance, Paley [34] showed that there exists an absolute constant c and infinitely

many quadratic characters χ (mod q) such that max
N,M

S(M,N) ≥ c
√
q log log q. Mont-

gomery and Vaughan [28] proved that under GRH we have Sχ(M,N)� √q log log q,

hence making the Paley result best possible (up to a constant). This analysis works

for quadratic characters, but what about characters of odd order? Work of Granville

and Soundararajan [16] led to the following theorem of Goldmakher [14]:

Theorem 1.3. For every primitive character χ (mod q) of odd order k,

Sχ(0, N)�k
√
q(log q)∆k+o(1), where ∆k =

k

π
sin

π

k
, q →∞. (1.1)

Moreover, under GRH

Sχ(0, N)�k
√
q(log log q)∆k+o(1). (1.2)

5



Introduction

For both (1.1) and (1.2) the implicit constant depends only on k, and o(1) → 0 as

q →∞.

Furthermore, assuming GRH, for every odd integer k ≥ 3, there exists an infinite

family of characters χ (mod q) of order k satisfying

max
N

Sχ(0, N)�ε,k
√
q(log log q)∆k−ε.

As stated, the Pólya–Vinogradov inequality doesn’t work well when N is small

compared to
√
q. Allowing us to have N smaller would permit us to have a smaller

upper bound for the quadratic non-residues. The best theorem in this direction is

the Burgess bound [8].

Theorem 1.4. Let χ be a primitive character mod q, where q > 1, r is a positive

integer and ε > 0 is a real number. Let M and N be non-negative reals with N ≥ 1.

Then

|Sχ(M,N)| =

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣� N1− 1
r q

r+1

4r2
+ε

for r = 1, 2, 3 and for any r ≥ 1 if q is cubefree, the implied constant depending only

on ε and r.

Note that Pólya–Vinogradov works for any non-principal character while Burgess

works for primitive characters and the modulus must be cubefree in the case r > 3.

Norton [33] has extended it to all moduli by adding an extra term that depends on

the number of prime powers in the factorization of q.

To illustrate the importance of the Burgess inequality, we’ll sketch the proof that

g(p)�ε p
1

4
√
e

+ε
. First, let x = p

1
4

+ 1
2r and ε1 <

1
4r2

, where r is a positive integer and p

is prime. Let χ be a non-principal Dirichlet character mod p. Then by Theorem 1.4

6
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we have ∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣� x1− 1
r p

r+1

4r2
+ε1 = p

1
4

+ 1
2r

+(ε1− 1
4r2

) = o(x). (1.3)

For δ > 0, let y = x
1√
e

+δ
and assume that for all n ≤ y, χ(n) = 1. Since y2 > x, if

m ≤ x and χ(m) 6= 1, then m = qn, where χ(q) = −1, q is prime, and q > y. Using∑
p≤x

1

p
∼ log log p yields

∑
n≤x

χ(n) ≥
∑
n≤x

1− 2
∑
y<q≤x
χ(q)6=1

∑
n≤x

q

1� x

1− 2
∑
y<q≤x
q prime

1

q

�δ x. (1.4)

This idea is usually referred to as the Vinogradov trick. One can find a nice treatment

of it in [9] or one can read the original in [44].

Combining (1.4) and (1.3) yields g(p) �δ y. Therefore, for ε > 0, we have

g(p)�ε p
1

4
√
e

+ε
.

Just like how it is useful to have explicit estimates for the Pólya–Vinogradov

inequality, it is also useful to have explicit estimates for the Burgess inequality. In

their analytic number theory book [22], Iwaniec and Kowalski give a sketch of a proof

of the following explicit result:

Theorem 1.5. Let χ be a primitive character mod p, where p > 1 is prime. Let r be

a positive integer, and let M and N be non-negative reals with N ≥ 1. Then

|Sχ(M,N)| =

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣ ≤ 30N1− 1
r p

r+1

4r2 (log p)
1
r .

Iwaniec and Kowalski were not looking for the best possible constant. In Chapter

6, with an eye towards getting the best possible constant, we improve this to

7
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Theorem 1.6. Let p be a prime such that p ≥ 107. Let χ be a non-principal Dirichlet

character mod p. Let r be a positive integer, and let M and N be non-negative reals

with N ≥ 1. Then

|Sχ(M,N)| ≤ 2.71N1− 1
r p

r+1

4r2 (log p)
1
r .

If we restrict the range of N slightly in the Burgess inequality, there are stronger

results due to Booker [4] and McGown [25]. Booker’s result is stronger than Mc-

Gown’s but the proof is restricted to quadratic characters. In Chapter 6 we improve

McGown’s result, making it almost as strong as Booker’s result.

Recently, in [23], Levin, Pomerance and Soundararajan considered a “smoothed”

version of the Pólya–Vinogradov inequality. Instead of considering the sum of char-

acter values, they consider the sum of weighted character values

S∗χ(M,N) :=

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ .

The theorem they prove is the following:

Theorem 1.7. Let χ be a primitive character to the modulus q > 1 and let M,N be

real numbers with 0 < N ≤ q. Then

∣∣S∗χ(M,N)
∣∣ =

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ √q − N

√
q
.

The remarkable thing about this inequality is that it is very tight. Indeed, in

Chapter 2, we prove:

Theorem 1.8. Let χ be a primitive character to the modulus q > 1. Then, there

8
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exist integers M and N such that

∣∣S∗χ(M,N)
∣∣ > 2

π2

√
q.

This theorem shows us that the smoothed Pólya–Vinogradov inequality is best

possible up to a constant.

In Chapter 3 we use the smoothed Pólya–Vinogradov inequality to make an im-

provement on a theorem of Granville, Mollin and Williams. In [15], they prove that

for any positive fundamental discriminant D > 3705, there is always at least one

prime p ≤
√
D/2 such that the Kronecker symbol (D/p) = −1, i.e., the least inert

prime in a real quadratic field of discriminant D > 3705 is less than
√
D/2. We

improve this to:

Theorem 1.9. For any positive fundamental discriminant D > 1596, there is always

at least one prime p ≤ D0.45 such that the Kronecker symbol (D/p) = −1.

The proof of the theorem consists of three parts: when D is small (D ≤ 2.6×1017

for D odd and D ≤ 1.04× 1018 for D even), when D is huge (D ≥ 1024), and when D

is neither small nor huge. To check D small we use the tables computed in [15]. The

tables were created using a special computer called the Manitoba Scalable Sieving

Unit (MSSU, see [24]). It ran for about 5 months. Recent developments in sieving

machines (see [46]) suggests that a sieving machine could check up to about 1024,

which would allow us to improve the upper bound in the theorem to D3/7 or better

instead of D0.45.

In Chapter 5 we tackle the problem of consecutive residues and non-residues of a

Dirichlet character χ mod p. Let H be the largest integer such that there exists an

9



1.1 Notation

integer N such that χ(N + 1) = χ(N + 2) = . . . = χ(N + H). The best asymptotic

result is due to Burgess [7], where he shows that H = O(p1/4 log p). In a recent paper

in the arXiv, McGown [26] proved that H < 7.06p1/4 log p whenever p > 5 · 1018 and

H < 7p1/4 log p when p > 5 · 1055. We improve this to H < 3p1/4 log p for all odd p

and H < 1.55p1/4 log p whenever p > 2.5 · 109.

Overall, the purpose of the thesis is to get the best numerically explicit estimates

we can on character sums. Chapter 3 is an example of an application of explicit

character estimates, but there are others. For example, using the smoothed Pólya–

Vinogradov inequality, Levin, Pomerance and Soundararajan [23] proved that for

every prime p > 3 there is a primitive root t such that logt x = x, where logt x is

the discrete logarithm function to the base t for the cyclic group (Z/pZ)×. Using an

explicit estimate for the Burgess inequality, Booker [4] computed the class number

of a 32-digit discriminant. Finally, using weaker estimates than the ones shown in

Chapters 4, 5 and 6, McGown [25] showed that there are no norm-Euclidean Galois

cubic fields of discriminant larger than 10140. Using our estimates we would be able

to improve that theorem.

1.1 Notation

Throughout the thesis we will have the following notation:

• φ refers to the Euler totient function, i.e., for a positive integer n, φ(n) is the

number of positive integers less than or equal to n that are coprime to n.

• µ refers to the Moebius function, defined as follows: for n a positive integer,

µ(n) = 1, if n = 1 or if n is squarefree and has an even number of prime factors.

10



1.1 Notation

µ(n) = −1 if n is squarefree and has an odd number of prime factors. Finally,

µ(n) = 0 if n is not squarefree, i.e., there is a prime p such that p2 divides n .

• For n a positive integer, ω(n) will denote the number of distinct prime factors

of n.

• For x a real number, bxc is the floor function, i.e., the greatest integer less than

or equal to x.

• For x a real number, {x} is the fractional part of x, i.e., {x} = x− bxc.

• Throughout the thesis, p will represent a prime; this includes when we are

considering sums. For example,
∑
p≤x

p would be the sum of the prime numbers

less than or equal to x.

• log refers to the natural logarithm, i.e., the logarithm base e.

• θ refers to the Chebyshev function, i.e., for x a positive real number, θ(x) =∑
p≤x

log p.

• γ is the Euler–Mascheroni constant, i.e., γ = lim
n→∞

n∑
k=1

1

k
− log n.

• For integers a and b, (a, b) will denote the greatest common divisor of a and b.

Sometimes we will also denote this by gcd (a, b).

• We write f = O(g) to mean that there is a constant C with |f | ≤ Cg, for all

values of the variables under consideration. This is usually denoted as big Oh

notation or Landau O notation.

11



1.1 Notation

• Similarly, we use the Vinogradov symbol �, where f � g if |f | ≤ Cg for

some constant C, for all values of the variables under consideration. If we write

f �k g, it means that the constant C depends on k.

• We write f = Ω(g), if there is a constant C such that infinitely many posi-

tive integers n satisfy |f(n)| ≥ Cg(n). This differs from the computer science

convention, where f = Ω(g) if f � g.

• We write f = o(g) to mean that lim
x→∞

f(x)

g(x)
= 0.

12



Chapter 2

Smoothed Pólya–Vinogradov

Let χ be a non-principal Dirichlet character to the modulus q. It has been the interest

of mathematicians to study the sum

∣∣∣∣∣
M+N∑
n=M+1

χ(n)

∣∣∣∣∣. Pólya and Vinogradov, indepen-

dently proved in 1918 that the sum is bounded above by O(
√
q log q). Assuming the

Riemann Hypothesis for L-functions (GRH), Montgomery [28] showed that the sum

is bounded by O(
√
q log log q). This is best possible (up to a constant), because in

1932 Paley [34] proved that there are infinitely many quadratic characters χ such

that there exists a constant c > 0 that satisfy for some N the following inequality∣∣∣∣∣
N∑
n=1

χ(n)

∣∣∣∣∣ > c
√
q log log q.

Recently, in [23], Levin, Pomerance and Soundararajan considered a “smoothed”

version of the Pólya–Vinogradov inequality. Instead of considering the sum of the

characters, they consider the weighted sum

S∗χ(M,N) :=

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ .

13



2.1 Upper bound and corollaries

The theorem they prove is the following:

Theorem 2.1. Let χ be a primitive Dirichlet character to the modulus q > 1 and let

M,N be real numbers with 0 < N ≤ q. Then

∣∣S∗χ(M,N)
∣∣ =

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ √q − N

√
q
.

In section 2.1 we will give a proof of this theorem and several useful corollaries.

The remarkable thing about this theorem is that it is not very hard to prove and it

is a tight inequality, since one can show that
∣∣S∗χ(M,N)

∣∣ > c
√
q for some positive

constant c. Indeed, in section 2.2 we will prove that
∣∣S∗χ(M,N)

∣∣ > 2
π2

√
q. The proof

was motivated by the proof in [29] that if q > 1 is a positive integer and χ is a

primitive character mod q then max
M,N

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣ ≥
√
q

π
.

2.1 Upper bound and corollaries

Proof of Theorem 2.1. We follow the proof in [23]. Let

H(t) = max{0, 1− |t|}.

We wish to estimate |S∗χ(M,N)|.

Using the identity (see Corollary 9.8 in [29])

χ(n) =
1

τ(χ̄)

q∑
j=1

χ̄(j)e(nj/q)

where e(x) := e2πix and τ(χ) =

q∑
a=1

χ(a)e(a/q) is the Gauss sum, we can deduce

14



2.1 Upper bound and corollaries

S∗χ(M,N) =
1

τ(χ̄)

q∑
j=1

χ̄(j)
∑
n∈Z

e(nj/q)H

(
n−M
N

− 1

)
.

The Fourier transform (see Appendix D in [29]) of H is

Ĥ(s) =

∫ ∞
−∞

H(t)e(−st)dt =
1− cos 2πs

2π2s2
when s 6= 0, Ĥ(0) = 1,

which is nonnegative for s real. In general, if

f(t) = e(αt)H(βt+ γ), (2.1)

with β > 0, then

f̂(s) =
1

β
e

(
s− α
β

γ

)
Ĥ

(
s− α
β

)
. (2.2)

Using α = j/q, β = 1/N and γ = −M/N − 1, then by Poisson summation (see

Appendix D in [29]) we get

S∗χ(M,N) =
N

τ(χ̄)

q∑
j=1

χ̄(j)
∑
n∈Z

e

(
−(M +N)

(
n− j

q

))
Ĥ

((
s− j

q

)
N

)
. (2.3)

Using that χ(q) = 0, that Ĥ is nonnegative and that |τ(χ̄)| =
√
q for primitive

characters we have

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

q−1∑
j=1

∑
n∈Z

Ĥ

((
n− j

q

)
N

)
=

N
√
q

∑
k∈Z/kZ

Ĥ

(
kN

q

)
.

Therefore
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2.1 Upper bound and corollaries

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

(∑
k∈Z

Ĥ

(
kN

q

)
−
∑
k∈Z

Ĥ(kN)

)

=
√
q

(∑
k∈Z

N

q
Ĥ

(
kN

q

)
− N

q

∑
k∈Z

Ĥ(kN)

)
≤ √q

(∑
k∈Z

N

q
Ĥ

(
kN

q

)
− N

q
Ĥ(0)

)
.

Using α = γ = 0 and β = q
N

in (2.1) and (2.2) yields that the Fourier transform

of H
(
qt
N

)
is

1

β
e

(
s− 0

β
· (0)

)
Ĥ

(
s− 0

β

)
=
N

q
Ĥ

(
sdN

q

)
.

Therefore, by Poisson summation, we have

∣∣S∗χ(M,N)
∣∣ ≤ √q∑

l∈Z

H

(
ql

N

)
− N
√
q

=
√
qH(0)− N

√
q

=
√
q − N
√
q
. (2.4)

We used that q ≥ N which implies that for l 6= 0 and l ∈ Z,
∣∣ ql
N

∣∣ ≥ ∣∣ q
N

∣∣ ≥ 1 which

implies H
(
ql
N

)
= 0.

The following corollary, uses arithmetic information from the modulus q to give a

better upper bound for some ranges of N .

Corollary 2.1. Let χ be a primitive character to the modulus q > 1, let M,N be real

numbers with 0 < N ≤ q and let m be a divisor of q such that 1 ≤ m ≤ q
N

. Then

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ φ(m)

m

√
q.

Proof. Following the proof of the previous theorem, we arrive at (2.3). From there,

using that if (n,m) > 1 then χ(n) = 0, that Ĥ is nonnegative and that |τ(χ̄)| = √q
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2.1 Upper bound and corollaries

for primitive characters we have

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

q∑
j=1

(j,m)=1

∑
n∈Z

Ĥ

((
n− j

q

)
N

)
=

N
√
q

∑
k∈Z

(k,m)=1

Ĥ

(
kN

q

)
. (2.5)

Using inclusion exclusion we get

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

∑
d|m

µ(d)
∑
k∈Z

Ĥ

(
kdN

q

)
=
√
q
∑
d|m

µ(d)

d

∑
k∈Z

dN

q
Ĥ

(
kdN

q

)
.

Since the Fourier transform of H
(
qt
Nd

)
is dN

q
Ĥ
(
sdN
q

)
, then by Poisson summation

∣∣S∗χ(M,N)
∣∣ ≤ √q∑

d|m

µ(d)

d

∑
l∈Z

H

(
ql

Nd

)
=
√
q
∑
d|m

µ(d)

d
H(0) =

φ(m)

m

√
q.

We used that q ≥ mN which implies that for l 6= 0 and l ∈ Z,
∣∣ ql
Nd

∣∣ ≥ ∣∣ q
Nm

∣∣ ≥ 1

which implies H
(
ql
Nd

)
= 0.

The following corollary is a minor modification of Corollary 3 in [23], which was

stated without proof.

Corollary 2.2. Let χ be a primitive character to the modulus q > 1 and let M,N be

real numbers with N > 0. Then,

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ q3/2

N

{
N

q

}(
1−

{
N

q

})
. (2.6)

In particular, |S∗χ(M,N)| < √q.

Proof. In the proof of Theorem 2.1, we only used that N ≤ q in the last inequality
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2.1 Upper bound and corollaries

of (2.4). Therefore from (2.4) we have

|S∗χ(M,N)| ≤ √q

(∑
l∈Z

H

(
ql

N

)
− N

q

)
.

To get the desired result we need only prove

∑
l∈Z

H

(
ql

N

)
≤ N

q
+

q

N

{
N

q

}(
1−

{
N

q

})
.

Note that H
(
ql
N

)
= 0 for |l| > N

q
. Also H

(
ql
N

)
= H

(−ql
N

)
. Using these two facts

together with H(0) = 1, we get

∑
l∈Z

H

(
ql

N

)
= 1 + 2

∑
l≤N

q

H

(
ql

N

)
= 1 + 2

∑
l≤N

q

(
1− ql

N

)
.

Therefore

∑
l∈Z

H

(
ql

N

)
= 1 + 2

⌊
N

q

⌋
− 2q

N

∑
l≤N

q

l = 1 + 2

⌊
N

q

⌋
− q

N

(⌊
N

q

⌋)(⌊
N

q

⌋
+ 1

)
.

Letting θ = N
q

and using that N
q

=
⌊
N
q

⌋
+ θ, we get

∑
l∈Z

H

(
ql

N

)
= 1 +

2N

q
− 2θ +

q

N

(
N2

q2
+
N

q
(1− 2θ)− θ(1− θ)

)
=

2N

q
+ 1− 2θ − N

q
− (1− 2θ) +

q

N
θ(1− θ) =

N

q
+

q

N
θ(1− θ).

Therefore (2.6) is true. Once we have (2.6), we can conclude that
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2.1 Upper bound and corollaries

|S∗χ(M,N)| < √q. Indeed, if N ≤ q, then

S∗χ(M,N) ≤ q3/2

N

{
N

q

}(
1−

{
N

q

})
=
√
q − N
√
q
<
√
q;

and if N > q, we have

S∗χ(M,N) ≤ q3/2

N

{
N

q

}(
1−

{
N

q

})
≤ q3/2

4N
<

√
q

4
.

Our last corollary is an inequality for general Dirichlet characters (as opposed to

just primitive Dirichlet characters).

Corollary 2.3. Let χ be a non-principal Dirichlet character to the modulus q > 1

and let M,N be real numbers with N > 0. Then,

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ < 4√

6

√
q.

Proof. In this proof, we follow the ideas used in [29] to extend the Pólya–Vinogradov

inequality from primitive characters to general characters.

Let χ be induced by a primitive character χ∗ of modulus d > 1. This is possible

since χ is non-principal. In the case that χ is primitive, then χ∗ = χ. Letting χ0 be

the principal character mod q, we have that χ = χ∗χ0. Therefore χ(n) = χ∗(n) for n

an integer coprime to q, and χ(n) = 0 otherwise.

Let r be the product of primes that divide q but not d. Then when (n, r) > 1, we

have χ(n) = 0. If (n, r) = 1, then χ(n) = χ∗(n). Therefore
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2.2 Lower bound

∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣) =
∑

M≤n≤M+2N
(n,r)=1

χ∗(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)

=
∑

M≤n≤M+2N

χ∗(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣) ∑
k|(n,r)

µ(k)

=
∑
k|r

µ(k)
∑

M≤n≤M+2N
k|n

χ∗(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣) .
Now, writing n = km and using that χ∗ is totally multiplicative we get

∑
k|r

µ(k)χ∗(k)
∑

M
k
≤m≤M+2N

k

χ∗(m)

(
1−

∣∣∣∣∣m− M
k

N
k

− 1

∣∣∣∣∣
)

=
∑
k|r

µ(k)χ∗(k)Sχ∗

(
M

k
,
N

k

)
.

By Corollary 2.2, |Sχ∗(M/k,N/k)| <
√
d. Hence, taking absolute value we have

|S∗χ(M,N)| <
∑
k|r

√
d = 2ω(r)

√
d ≤ 2ω(r)

√
q

r
. (2.7)

Since 2ω is a multiplicative function, and for p ≥ 5, 2 <
√
p, we have

2ω(r)

√
r

=
∏
p|r

2
√
p
≤ 2√

2
× 2√

3
=

4√
6
. (2.8)

Combining (2.7) with (2.8) yields the desired result.

2.2 Lower bound

Let’s start with a lemma that will be used in the proof of the lower bound.
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2.2 Lower bound

Lemma 2.1. Let N ∈ N and α ∈ R such that e(α) 6= 1, then

N∑
n=0

n · e(αn) =
Ne ((N + 1)α)− (N + 1)e (Nα) + 1(

e
(
α
2

)
− e

(
−α

2

))2

Proof. For x ∈ R, we have
N∑
n=0

xn =
xN+1 − 1

x− 1
, by differentiating both sides and

multiplying by x we get

N∑
n=0

n · xn = x
(N + 1)xN(x− 1)− (xN+1 − 1)

(x− 1)2
= x

NxN+1 − (N + 1)xN + 1

(x− 1)2
.

Therefore, by making the substitution x = e(α) we get

S(N) :=
N∑
n=0

n · e(αn) = e(α)
Ne ((N + 1)α)− (N + 1)e (Nα) + 1

(e(α)− 1)2
.

Using that (e(α)− 1)2 = e(α)
(
e
(
α
2

)
− e

(
−α

2

))2
yields the lemma.

Theorem 2.2. Let χ be a primitive character to the modulus q > 1 and let M,N be

positive integers. Then

S2(N) := max
1≤M≤q

∣∣∣∣∣
M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≥ 1

N
√
q

(
sin πN

q

)2

(
sin π

q

)2 (2.9)

Proof. Let

S3(N) :=

q∑
M=1

e

(
M

q

)M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣) ,
and note that
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2.2 Lower bound

|S3(N)| ≤
q∑

M=1

∣∣∣∣∣
M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣

≤ q max
1≤M≤q

∣∣∣∣∣
M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ = qS2(N).

Therefore we can focus on S3(N).

S3(N) =

q∑
M=1

e

(
M

q

)M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)

=
2N∑
n=0

q∑
M=1

e

(
M

q

)
χ(n+M)

(
1−

∣∣∣ n
N
− 1
∣∣∣) .

Now we can do a change of variable, to go from M to L− n:

S3(N) =
2N∑
n=0

q∑
L=1

e

(
L− n
q

)
χ(L)

(
1−

∣∣∣ n
N
− 1
∣∣∣)

=
2N∑
n=0

e

(
−n
q

)(
1−

∣∣∣ n
N
− 1
∣∣∣) q∑

L=1

e

(
L

q

)
χ(L).

Therefore,

S3(N) = τ(χ)
2N∑
n=0

e

(
−n
q

)(
1−

∣∣∣ n
N
− 1
∣∣∣) = τ(χ)S4(N).

Now it’s time to work on S4(N):

S4(N) =
2N∑
n=0

e

(
−n
q

)(
1−

∣∣∣ n
N
− 1
∣∣∣) =

N∑
n=0

e

(
−n
q

)
n

N
+

2n∑
n=N+1

e

(
−n
q

)(
2− n

N

)
.
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2.2 Lower bound

By making the change of variable m = 2N − n, we get

S4(N) =
1

N

N∑
n=0

e

(
−n
q

)
n +

e
(
−2N

q

)
N

N−1∑
m=0

e

(
m

q

)
m.

Using Lemma 2.1 with α = −1
q

we get

S4(N) =
1

N

Ne ((N + 1)α)− (N + 1)e (Nα) + 1(
e
(
α
2

)
− e

(
−α

2

))2

+
e (2Nα)

N

(N − 1)e (−Nα)−Ne (−(N − 1)α) + 1(
e
(
−α

2

)
− e

(
α
2

))2 .

Therefore, by taking common denominator and multiplying out we get that S4(N)

equals

Ne ((N + 1)α)− (N + 1)e (Nα) + 1 + (N − 1)e(Nα)−Ne((N + 1)α) + e(2Nα)

N
(
e
(
α
2

)
− e

(
−α

2

))2 ,

which equals

e(2Nα)− 2e(Nα) + 1

N
(
e
(
α
2

)
− e

(
−α

2

))2 =
e(Nα)

N

(
e
(
Nα
2

)
− e

(
−Nα

2

))2(
e
(
α
2

)
− e

(
−α

2

))2 =
e(Nα)

N

(sinNπα)2

(sinπα)2 . (2.10)

From earlier we know, qS2(N) ≥ |S3(N)| = |τ(χ)||S4(N)|. Using |τ(χ)| =
√
q,

that |e(x)| = 1 and (2.10) yields the theorem.

Corollary 2.4. Let χ be a primitive character to the modulus q > 1 and let M,N be

positive integers. Then

max
M,N

∣∣∣∣∣
M+2N∑
n=M

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≥ 2

π2

√
q.
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2.2 Lower bound

Proof. If q is even, let N = q
2
. Therefore (2.9) becomes

S2(N) ≥ 1

N
√
q

(
sin πN

q

)2

(
sin π

q

)2 =
2

q
√
q

1(
sin π

q

)2 ≥
2

π2

√
q.

The last inequality comes from 1
sinx
≥ 1

x
.

If q is odd, let N = q−1
2

, now we get

S2(N) ≥ 1

N
√
q

(
sin πN

q

)2

(
sin π

q

)2 =
2

(q − 1)
√
q

(
cos π

2q

)2

(
sin π

q

)2 .

From this and sin π
q

= 2 sin π
2q

cos π
2q

we get

S2(N) ≥ 2

4(q − 1)
√
q

1(
sin π

2q

)2 ≥
2

π2

q

q − 1

√
q >

2

π2

√
q.

Remark 2.1. If we consider N = q
3

for 3 | q, N = q−1
3

for q ≡ 1 (mod 3) and N = q−2
3

for q ≡ 2 (mod 3) then we can improve the constant from 2
π2 = 0.202642 . . . to

9
4π2 = 0.227973 . . .. With N around 2q

5
the constant improves a bit more to 5(5+

√
5)

16π2 =

0.229115 . . .. The optimal value for N under this technique is around N = .371q

where the constant is 0.230651.
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Chapter 3

The least inert prime in a real

quadratic field

In [15], Granville, Mollin and Williams prove the following theorem:

Theorem 3.1. For any positive fundamental discriminant D > 3705, there is always

at least one prime p ≤
√
D/2 such that the Kronecker symbol (D/p) = −1.

Their proof consists of three parts. They verify the truth of the conjecture up

to fairly large values of D computationally. They show using analytic methods that

there are no counterexamples for D > 1032 and they complete the proof using analytic

methods combined with computation (what I’ll refer to as the hybrid case).

Note that D is a fundamental discriminant if and only if either D is squarefree,

D 6= 1, and D ≡ 1 (mod 4) or D = 4L with L squarefree and L ≡ 2, 3 (mod 4).

Since (D/2) = −1 for D ≡ 5 (mod 8), we need only consider values of D such that

D = L ≡ 1 (mod 8) or D = 4L with L ≡ 2, 3 (mod 4).

For the computational aspect, they used the Manitoba Scalable Sieving Unit, a
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The least inert prime in a real quadratic field

very powerful sieving machine (see [24] for more details). They ran the machine

for a period of 5 months to produce three tables. From these tables the relevant

information is the following:

If

(a) L ≡ 1 (mod 8) with (L/q) = 0 or 1 for all odd q ≤ 257,

(b) L ≡ 2 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ 283, or

(c) L ≡ 3 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ 277

then L > 2.6× 1017.

From (a) we see that if D is odd and D < 2.6× 1017 then there exists q ≤ 257 for

which (D/q) = −1, verifying the theorem for D > 4(257)2 = 264196. From (b) and

(c) we see that if D is even and D = 4L < 4×2.6×1017 = 1.04×1018 then there exists

a q ≤ 283 for which (D/q) = −1, verifying the theorem for D > 4(283)2 = 320356.

Running a simple loop over all fundamental discriminants below 320356 we find that

if we let

S = {D| the least prime p such that (D/p) = −1 satisfies p >
√
D/2},

then

S = {5, 8, 12, 13, 17, 24, 28, 33, 40, 57, 60, 73, 76, 88, 97, 105, 120, 124,

129, 136, 145, 156, 184, 204, 249, 280, 316, 345, 364, 385, 424, 456,

520, 561, 609, 616, 924, 940, 984, 1065, 1596, 2044, 3705}.

We point out that in [15] they failed to mention that 120 and 561 are in S and
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The least inert prime in a real quadratic field

they incorrectly claim 2244 ∈ S (note that 2244 is not a fundamental discriminant

since 2244/4 = 561 ≡ 1 (mod 4)). Theorem 3.1 was first conjectured in Chapter

6 of [27] with a slightly different wording, focusing on the radicand instead of on

the fundamental discriminant. When [15] translated radicands to discriminants there

were mistakes; changing 561 to 2244 (this accounts for claiming 2244 ∈ S while

neglecting that 561 ∈ S) and we suspect that since 60 ∈ S they thought that the

radicand 30 was already accounted for, therefore not including 120 in S.

For the analytical methods in the proof, i.e., to show that D > 1032 works, the

main tool in the paper is the Pólya–Vinogradov inequality. The Pólya–Vinogradov

inequality states that there exists an absolute universal constant c such that for every

character χ to the modulus q we have the inequality

∣∣∣∣∣
M+N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ c
√
q log q. This

is the aspect on which we have been able to make some improvements, by using the

Smoothed Pólya–Vinogradov inequality.

To complete the proof, i.e., show that when D ≤ 1032, D > 2.6 × 1017 works in

the odd case and D > 1.04× 1018 works in the even case. The authors combined the

Pólya–Vinogradov inequality with computation. This aspect of their proof would not

be needed if one uses the Smoothed Pólya–Vinogradov, however it is needed in our

case to be able to improve their theorem.

In this paper we will prove

Theorem 3.2. For any positive fundamental discriminant D > 1596, there is always

at least one prime p ≤ D0.45 such that the Kronecker symbol (D/p) = −1.

Note, that by using the tables provided in [15] the only even values of D <

1.04×1018 that can contradict the theorem satisfy D < 2831/.45 < 280812 and the only

odd values of D < 2.6× 1017 that can contradict the theorem satisfy D < 2571/.45 <
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3.1 Smoothed Pólya–Vinogradov

226677. Checking over all these values we find that the set of counterexamples S
′

is

S
′
= {8, 12, 24, 28, 33, 40, 60, 105, 120, 156, 184, 204, 280, 364, 456, 520, 1596}.

This set is sparser than S because for D < 220 = 1048576,
√
D/2 is smaller than

D0.45.

The chapter is divided as follows: In section 3.1, we prove a slightly better

smoothed Pólya–Vinogradov inequality, one that uses a little more information about

the modulus of the character. This inequality will be key in our proof of Theorem 3.2.

In section 3.2, we will prove many technical lemmas that will be used in the proof of

the main theorem. In section 3.3 we prove the theorem for D > 1024 and in the last

section (section 3.4) we close the gap proving the theorem for D > 1018 when D is

even and D > 1017 when D is odd.

3.1 Smoothed Pólya–Vinogradov

Theorem 3.3. Let χ be a primitive character to the modulus q > 1, let M,N be real

numbers with 0 < N ≤ q. Then

∣∣S∗χ(M,N)
∣∣ =

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ φ(q)

q

√
q + 2(ω(q)−1) N√

q
.

Remark 3.1. This theorem is similar to Corollary 2.1. Both use arithmetic properties

of q to improve the upper bound. In the ranges we will require of N , this inequality

will be more useful to us.
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3.1 Smoothed Pólya–Vinogradov

Proof. The proof is very similar to the proof of Theorem 2.1. Let

H(t) = max{0, 1− |t|}.

We wish to estimate |S∗χ(M,N)|. Following the same strategy as in the proof of

Theorem 2.1 and using that if (n, q) > 1 then χ(n) = 0, we have from (2.5)

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

q∑
j=1

(j,q)=1

∑
n∈Z

Ĥ

((
n− j

q

)
N

)
=

N
√
q

∑
k∈Z

(k,q)=1

Ĥ

(
kN

q

)
.

Using inclusion exclusion we get

∣∣S∗χ(M,N)
∣∣ ≤ N
√
q

∑
d|q

µ(d)
∑
k∈Z

Ĥ

(
kdN

q

)
=
√
q
∑
d|q

µ(d)

d

∑
k∈Z

dN

q
Ĥ

(
kdN

q

)
.

Since the Fourier transform of H
(
qt
Nd

)
is dN

q
Ĥ
(
sdN
q

)
, then by Poisson summation

∣∣S∗χ(M,N)
∣∣ ≤ √q∑

d|q

µ(d)

d

∑
l∈Z

H

(
ql

Nd

)
=
√
q
∑
d|q

µ(d)

d

1 + 2
∑

1≤l≤Nd
q

(
1− ql

Nd

)
=
√
q
∑
d|q

µ(d)

d
+ 2
√
q
∑
d|q

µ(d)

d

∑
1≤l≤Nd

q

(
1− ql

Nd

)

=
φ(q)

q

√
q + 2

√
q
∑
d|q

µ(d)

d

∑
1≤l≤Nd

q

(
1− ql

Nd

)
. (3.1)

Note that for the last inner sum to be nonzero, d ≥ q
N

. Let’s calculate the inner

sum: ∑
1≤l≤Nd

q

(
1− ql

Nd

)
=

⌊
Nd

q

⌋(
1− q

2Nd

(⌊
Nd

q

⌋
+ 1

))
.
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Replacing
⌊
Nd
q

⌋
with Nd

q
−
{
Nd
q

}
and multiplying through, we get:

∑
1≤l≤Nd

q

(
1− ql

Nd

)
=
Nd

2q
− 1

2
+

q

2Nd

{
Nd

q

}(
1−

{
Nd

q

})
. (3.2)

Now,

q

2Nd

{
Nd

q

}(
1−

{
Nd

q

})
≤ q

8Nd
≤ 1

8
. (3.3)

The last inequality follows from d ≥ q
N

. Combining (3.2) with (3.3) we get

0 ≤
∑
l≤Nd

q

(
1− ql

Nd

)
<
Nd

2q
. (3.4)

From (3.1) and (3.4) we get

∣∣S∗χ(M,N)
∣∣ < φ(q)

q

√
q + 2

√
q
∑
d|q

µ(d)=1

1

d

(
Nd

2q

)

≤ φ(q)

q

√
q +

N
√
q

∑
d|q

µ(d)=1

1 =
φ(q)

q

√
q + 2(ω(q)−1) N√

q
.

3.2 Useful lemmas

We start by calculating a sum that pops up when dealing with the smoothed Pólya–

Vinogradov inequality.
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3.2 Useful lemmas

Lemma 3.1. If x is a positive real number, then

∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) = x− ‖x‖

2

x
,

where ‖x‖ is the distance of x to the nearest integer.

Proof. Let’s work on the sum:

∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

∑
n≤x

n

x
+

∑
x<n≤2x

(
2− n

x

)
=

2

x

∑
n≤x

n− 1

x

∑
n≤2x

n+ 2b2xc − 2bxc

=
2

x

bxc(bxc+ 1)

2
− 1

x

b2xc(b2xc+ 1)

2
+ 2b2xc − 2bxc

=
b2xc
2x

(2x+ {2x} − 1)− bxc
x

(x+ {x} − 1) . (3.5)

Case 1: ‖x‖ = {x}. Then b2xc = 2bxc and {2x} = 2{x}. Using this and equation

(3.5) we get

∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

bxc
x

(2x+ 2{x} − 1− x− {x}+ 1)

=
bxc
x

(x+ {x}) =
x2 − {x}2

x
= x− ‖x‖

2

x
.

Case 2: ‖x‖ = 1 − {x}. Then b2xc = 2bxc + 1 and {2x} = 2{x} − 1. Using this

and equation (3.5) we get

∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

2bxc+ 1

2x
(2x+ 2{x} − 2)− bxc

x
(x+ {x} − 1)

=
bxc
x

(x+ {x} − 1) +
1

2x
(2x+ 2{x} − 2) =

x+ {x} − 1

x
(bxc+ 1)

=
(x+ ({x} − 1))(x− ({x} − 1))

x
=
x2 − (1− {x})2

x
= x− ‖x‖

2

x
.

31



3.2 Useful lemmas

In the proof of the main theorem, we will need to consider the same sum but sieving

out the numbers n that satisfy gcd (n,D) > 1. Therefore we prove the following result.

Lemma 3.2. Let N be a positive real number and let D be a positive integer. Then

∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣) ≥ φ(D)

D
N − 2(ω(D)−2).

Proof. Using Lemma 3.1,

∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣) =

∑
d|D

µ(d)
∑
n≤ 2N

d

(
1−

∣∣∣∣ndN − 1

∣∣∣∣) =
∑
d|D

µ(d)

(
N

d
−
‖N
d
‖2

N
d

)

=
∑
d|D

µ(d)

d
N −

∑
d|D

µ(d)
‖N
d
‖2

N
d

=
φ(D)

D
N −

∑
d|D

µ(d)
‖N
d
‖2

N
d

. (3.6)

Now, since
‖N

d
‖2

N
d

is nonnegative, we can bound the sum by summing over d such

that µ(d) = 1. Also, if d ≥ 2N then ‖N/d‖ = N/d, so we can split it in two sums.

∑
d|D

µ(d)
‖N
d
‖2

N
d

=
∑
d≤2N

d|D

µ(d)
‖N
d
‖2

N
d

+
∑
d>2N
d|D

µ(d)
N

d
≤

∑
d≤2N

d|D, µ(d)=1

d

4N
+

∑
d>2N

d|D, µ(d)=1

N

d

≤
∑
d≤2N

d|D, µ(d)=1

1

2
+

∑
d>2N

1

2

d|D, µ(d)=1

=
∑
d|D

µ(d)=1

1

2
= 2(ω(D)−2). (3.7)

Combining (3.6) and (3.7) we get the lemma.

The previous lemma has 2ω(D) in its error term, therefore it is useful to have
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3.2 Useful lemmas

explicit bounds on 2ω(D). We find such estimates in the following lemma.

Lemma 3.3. Let D be a positive integer. Then 2ω(D) < 4.8618D1/4. If D > 7.43 ×

1012 then 2ω(D) < 2.4817D1/4. If D > 3.05× 1014, then 2ω(D) < 1.9615D1/4. If D >

1.31× 1016 then 2ω(D) < 1.532D1/4. Finally, if D > 3.26× 1019, then 2ω(D) < D1/4.

Proof. Since 2ω is multiplicative, we have

2ω(D)

D1/4
=
∏
p|D

2

p1/4
.

Since 13 is the last prime p with p
1
4 < 2, then

∏
p|D

2

p1/4
≤
∏
p≤13

2

p1/4
≤ 4.8618.

Let pi be the i-th prime. Let k ≥ 6 be an integer. Assume that

D ≥M(k) :=
k∏
i=1

pi.

We will show that

2ω(D)

D1/4
≤

k∏
i=1

2

pi
:= F (k). (3.8)

This will yield the lemma, since 7.43× 1012 > M(12) and F (12) > 2.4817. The other

claims in the lemma coming from using k = 13, k = 14 and k = 16, respectively.

Let’s prove (3.8). We will do it in two cases, when ω(D) ≤ k and when ω(D) > k.

In the first case, we have

2ω(D)

D1/4
≤ 2k

M(k)1/4
= F (k).
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In the second case we have ω(D) > k. Let ω(D) = r. Since M(r) is the smallest

number with r distinct prime factors, we have that D ≥M(r). Therefore

2ω(D)

D1/4
≤ 2ω(M(r))

M(r)1/4
=

(
k∏
i=1

2

p
1/4
i

)(
r∏

i=k+1

2

p
1/4
i

)
≤

(
k∏
i=1

2

p
1/4
i

)
.

The last inequality is true since p
1/4
7 > 2, and k+ i ≥ 7 for i = 1, 2, . . . , r− k.

The proof of the main theorem also requires explicit estimates for the sum of

primes. The following lemma (which is also of independent interest), gives lower and

upper bounds on the sum of primes up to x.

Lemma 3.4. For x a positive real number. If x ≥ a then there exist c1 and c2

depending on a such that

x2

2 log x
+

c1x
2

log2 x
≤
∑
p≤x

p ≤ x2

2 log x
+

c2x
2

log2 x
.

The following table gives us c1 and c2 for various values of a:

a c1 c2

315437 0.205448 0.330479
468577 0.211358 0.325931
486377 0.212903 0.325538
644123 0.214289 0.322610
678407 0.214930 0.322327
758231 0.215540 0.321505
758711 0.215938 0.321490
10544111 0.239817 0.292511

Table 3.1: Bounds for the sum of primes.
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Proof. To estimate the sum, we will use the very good estimates of θ(x) which can

be found in Schoenfeld [40] and for the largest a we use an estimate of Dusart [11].

Let x ≥ a, now let k1 and k2 satisfy

x− k2
x

log x
≤ θ(x) ≤ x+ k1

x

log x
.

Table 3.2 has the values of k1 and k2 for different a and it also has a column for a

constant C which will pop up later in the proof.

For x ≥ a θ(x) ≤ x+ k1
x

log x
θ(x) ≥ x− k2

x
log x

∫ x
a

t
log3 t

dt ≤ C x2

log2 x

a k1 k2 C
315437 0.0201384 1/29 0.0371582
468577 0.0201384 1/35 0.0360657
486377 0.0201384 1/37 0.0359661
644123 0.0201384 1/39 0.0352334
678407 0.0201384 1/40 0.0351014
758231 0.0201384 1/41 0.0348216
758711 0.0201384 0.0239922 0.0348201
10544111 0.006788 0.006788 0.0293063

Table 3.2: Bounds for θ(x).

Now, let’s work with the sum of primes using partial summation:

∑
p≤x

p =
∑
p≤x

log p
p

log p
= θ(x)

x

log x
−
∫ x

2

θ(t)

(
1

log t
− 1

log2 t

)
dt.

Then we can expand and get

∑
p≤x

p =
θ(x)x

log x
−
∫ x

2

θ(t)

log t
dt+

∫ x

2

θ(t)

log2 t
dt

=
θ(x)x

log x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt−

∫ x

a

θ(t)

log t
dt+

∫ x

a

θ(t)

log2 t
dt. (3.9)
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Now using this equation, we will work out an upper bound and then a lower

bound. Let’s proceed with the upper bound.

First we have for x ≥ a

θ(x)x

log x
≤ x2

log x
+

k1x
2

log2 x
. (3.10)

Then we have

−
∫ x

a

θ(t)

log t
dt ≤ −

∫ x

a

t− k2t
log t

log t
dt = −

∫ x

a

t

log t
dt+ k2

∫ x

a

t

log2 t
dt. (3.11)

We also have

∫ x

a

θ(t)

log2 t
dt ≤

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt. (3.12)

By using partial integration we get

∫ x

a

t

log t
dt =

x2

2 log x
− a2

2 log a
+

∫ x

a

t

2 log2 t
dt, (3.13)

and ∫ x

a

t

log2 t
dt =

x2

2 log2 x
− a2

2 log2 a
+

∫ x

a

t

log3 t
dt. (3.14)

Using (3.10), (3.11) and (3.12) on (3.9) yields

∑
p≤x

p ≤ x2

log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt

−
∫ x

a

t

log t
dt+ (1 + k2)

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt.

36



3.2 Useful lemmas

Now, using (3.13) we get

∑
p≤x

p ≤ x2

log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt− x2

2 log x
+

a2

2 log a

−
∫ x

a

t

2 log2 t
dt+ (1 + k2)

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt.

By simplifying and then using (3.14) we get that the right hand side equals

x2

2 log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

+

(
1

2
+ k2

)(
x2

2 log2 x
− a2

2 log2 a
+

∫ x

a

t

log3 t
dt

)
+ k1

∫ x

a

t

log3 t
dt.

By rearranging further we get that this equals

x2

2 log x
+

(
1

4
+ k1 +

k2

2

)
x2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

−
(

1

2
+ k2

)
a2

2 log2 a
+

(
1

2
+ k1 + k2

)∫ x

a

t

log3 t
dt.

Now,
∫ a

2
θ(t)
log t

dt,
∫ a

2
θ(t)

log2 t
dt and

∫ a
2

t
log3 t

dt are constant. Also,∫ x
a

t
log3 t

dt = o
(
x2/(log2 x)

)
and hence, we can then find a constant C (see Table 3.2)

such that ∫ x
a

t
log3 t

dt

x2

log2 x

≤ C.

Therefore, for x ≥ a, we have

∑
p≤x

p ≤ x2

2 log x
+

(
1

4
+ k1 +

k2

2
+

(
1

2
+ k1 + k2

)
C + A

)
x2

log2 x
,
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where

A = max

{
0,

∫ a
2

θ(t)

log2 t
dt−

∫ a
2

θ(t)
log t

dt+ a2

2 log a
−
(

1
2

+ k2

)
a2

2 log2 a

a2

log2 a

}
.

We can now plug it into a calculator and get the third column in Table 3.1. This

completes our work for the upper bound.

It is time to work on the lower bound. We proceed in the same way. In fact,

every time a k1 appears in the previous inequalities, it may be replaced by −k2 and

viceversa. One would also replace the ≤ symbol with ≥. After doing this, we reach

the following inequality:

∑
p≤x

p ≥ x2

2 log x
+

(
1

4
− k2 −

k1

2

)
x2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

−
(

1

4
− k1

2

)
a2

log2 a
+

(
1

2
− k1 − k2

)∫ x

a

t

log3 t
dt.

Working with the constant in the lower bound is a bit trickier than in the upper

bound because we have to consider whether
(

1
2
− k1 − k2

)
is positive or negative. In

the case it is negative, we replace the integral with C, in the case it is positive we

replace it with 0. Note that the expression is positive when x ≥ 599 and it is negative

when x < 599.

Therefore, we have two cases, for x ≥ a with a < 599 we have

∑
p≤x

p ≤ x2

2 log x
+

(
1

4
− k2 −

k1

2
+

(
1

2
− k1 − k2

)
C + A

)
x2

log2 x
,

and for a ≥ 599 we have

∑
p≤x

p ≤ x2

2 log x
+

(
1

4
− k2 −

k1

2
+ A

)
x2

log2 x
,
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where

A = min

{
0,

∫ a
2

θ(t)

log2 t
dt−

∫ a
2

θ(t)
log t

dt+ a2

2 log a
−
(

1
2
− k1

)
a2

2 log2 a

a2

log2 a

}
.

After plugging the numbers in the calculator we get the desired results, completing

the lemma.

Corollary 3.1. For x, y real numbers such that x > y. For y ≥ a, there exist c1 and

c2 depending on a such that

1

2

(
x2

log x
− y2

log y

)
+

c1x
2

log2 x
− c2y

2

log2 y
≤
∑
y<p≤x

p ≤ 1

2

(
x2

log x
− y2

log y

)
+

c2x
2

log2 x
− c1y

2

log2 y
.

The values of c1 and c2 can be found in the table for Lemma 3.4.

Proof. It easily follows from the lemma once we write
∑
y<p≤x

p =
∑
p≤x

p−
∑
p≤y

p.

Using the estimates on the sum of primes, we can then use these to estimate the

sum which comes up in the proof of the main theorem. We do this in the following

lemma.

Lemma 3.5. Let B ≥ 315487 and N be positive real numbers. For n ≤ 2N
B

a natural

number we have the following inequality:

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n logB
.

Proof. If n ≤ N
B

then

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
B<p≤N

n

np

N
+

∑
N
n
<p≤ 2N

n

(
2− np

N

)
, (3.15)
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and if n > N
B

then

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
B<p≤ 2N

n

(
2− np

N

)
≤

∑
N
n
<p≤ 2N

n

(
2− np

N

)
. (3.16)

Since both sums require the bounding of
∑

N
n
<p≤ 2N

n

(
2− np

N

)
, we’ll estimate this first.

Dusart [11, Theorem 14, p.22] proved that for x > 1, π(2x) − π(x) ≤ x
log x

.

Combining that with Corollary 3.1 yields

∑
N
n
<p≤ 2N

n

(
2− np

N

)
= 2

(
π

(
2N

n

)
− π

(
N

n

))
− n

N

∑
N
n
<p≤ 2N

n

p

≤ 2N

n log N
n

− n

N

(
2N2

n2 log
(

2N
n

) − N2

2n2 log
(
N
n

) +
4c1N

2

n2 log2
(

2N
n

) − c2N
2

n2 log2
(
N
n

))

=
2N

n log
(
N
n

) − 2N

n log
(

2N
n

) +
N

2n log
(
N
n

) − 4c1N

n log2
(

2N
n

) +
c2N

n log2
(
N
n

) , (3.17)

where c1 and c2 come from Table 3.1 in Lemma 3.4. Since

2N

n log
(
N
n

) − 2N

n log
(

2N
n

) =
(log 4)N

n log
(
N
n

)
log
(

2N
n

) ,
then (3.17) becomes

N

2n log
(
N
n

) +
(log 4)N

n log
(
N
n

)
log
(

2N
n

) +
c2N

n log2
(
N
n

) − 4c1N

n log2
(

2N
n

) ,
which equals

N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N, n), (3.18)
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where

f(N, n) = c2 + (log 4)

(
log
(
N
n

)
log
(

2N
n

))− 4c1

(
log
(
N
n

)
log
(

2N
n

))2

.

Since log x/ log 2x is an increasing function for x > 0 and log x
log 2x

< 1, then we can

bound f(N, n) by replacing the fraction with 1 in the positive term and by picking

the smallest possible value of N
n

in the negative part. Since n ≤ 2N
B

, then we have

that N
n
≥ B

2
. Therefore

f(N, n) ≤ c2 + log 4− 4c1

(
log
(
B
2

)
logB

)2

.

Using Lemma 3.4, for B ≥ 315487, we have c1 = 0.205448 and c2 = .330479 and

together with N
n
≥ B

2
we get that f(N, n) ≤ 1 yielding

∑
N
n
<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

) . (3.19)

To complete the estimate we care about, we must now bound n
N

∑
B<p≤N

n

p. We can

do this by using Corollary 3.1:

n

N

∑
B<p≤N

n

p ≤ n

N

(
N2

2n2 log
(
N
n

) − B2

2 logB
+

c2N
2

n2 log2
(
N
n

) − c1B
2

log2B

)

=
N

2n log
(
N
n

) +
c2N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
. (3.20)

Now, for n ≤ N
B

, by (3.15) and using the estimates of (3.19) and (3.20) we have

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n log
(
N
n

) +
(1 + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
.
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We want to prove this is ≤ N
n logB

. We note that N
n logB

− N

n log (N
n )

=
N log ( N

nB )
n logB log (N

n )
, so

what we want is

N log
(
N
nB

)
n logB log

(
N
n

) +
c1nB

2

N log2B
+

nB2

2N logB
≥ (1 + c2)N

n log2
(
N
n

) .
After making the substition of N

n
= Bk we have that we want

Bk log k

logB logBk
+

c1B

k log2B
+

B

2k logB
≥ (1 + c2)Bk

log2Bk
.

We can divide the whole inequality by B and multiply by log2Bk, so we get

k log k
logBk

logB
+
c1

k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ (1 + c2)k.

For k ≥ 4, using that for B ≥ 315487, c2 = 0.330479 we have

k log k
logBk

logB
+
c1

k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ k log k ≥ (1 + c2)k.

And for 1 ≤ k < 4 using that B ≥ 315487 we have

k log k
logBk

logB
+
c1

k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ k log k +

c1

k
+

log 315487

2k
≥ (1 + c2)k.

This completes the proof of the lemma when n ≤ N
B

.

For n > N
B

, using (3.16) and (3.19) we have

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

) .
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Now using that N
B
< n ≤ 2N

B
we have that B

2
≤ N

n
≤ B. Using this we have

N

n logB
− N

2n log
(
N
n

) =
N log

(
N2

n2B

)
2n logB log

(
N
n

) ≥ N log
(
B
4

)
2n logB logB

. (3.21)

and

N

n log2
(
N
n

) ≤ N

n log2
(
B
2

) (3.22)

For B ≥ 73 we have log (B/4) log2 (B/2) ≥ 2 log2B and hence from combining the

inequalities (3.21) and (3.22) we get

N

n logB
− N

2n log
(
N
n

) ≥ N

n log2
(
N
n

) ,
completing the proof that for n > N

B

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n logB
.

During the proof of the main theorem, one of the problems that arises comes from

bounding

D

φ(D)

∑
n≤x

(n,D)=1

1

n
.

The difficulty is that when D has many prime factors D
φ(D)

is big while the other

factor is small. And if D has few prime factors we have the opposite situation. The

following lemma allows us to simplify this situation by showing that we can reduce it

to considering D having many small prime factors.
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Lemma 3.6. Let M =
∏

p≤x p. For a positive integer D, let k be the positive integer

that satisfies that (D,M) = M/k. Then

∑
n≤x

(n,D)=1

1

n
≤ k

φ(k)
.

Proof. Note that if n ≤ x and (n,D) = 1 then any prime p that divides n also divides

k. Therefore

∑
n≤x

(n,D)=1

1

n
≤
∏
p|k

(
1 +

1

p
+

1

p2
+ . . .

)
=
∏
p|k

p

p− 1
=
∏
p|k

p

φ(p)
=

k

φ(k)
.

The following lemma combines Lemmas 3.5 and 3.6 to give us the result we need

in the proof of the main theorem.

Lemma 3.7. For B and N positive real numbers and D a positive integer. Let

M =
∏
p≤ 2N

B

p and k be a positive integer such that (D,M) = M
k

. Then, we have

∑
B<p≤2N

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ k

φ(k)

N

logB
.

Proof. Exchanging order of summation we get:

∑
B<p≤2N

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .

The inner sum can be dealt with using Lemma 3.5 and then we will use
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Lemma 3.6 for the outer sum:

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ ∑

n≤ 2N
B

(n,D)=1

N

n logB
≤ k

φ(k)

N

logB
.

Finally, we end the section with an explicit estimate concerning the ratio D
φ(D)

that will be needed in the proof of the main theorem.

Lemma 3.8. For D a positive integer greater than 6 · 1012 we have

D

φ(D)
< 2 log logD.

Proof. Rosser and Schoenfeld [38] proved that for D > 223092870 the following in-

equality is true:

D

φ(D)
≤ eγ log logD +

2.5

log logD
.

Therefore, D/φ(D) ≤ 2 log logD for D > 6 · 1012.

3.3 Proof of the theorem when D > 1024

Theorem 3.4. For D a fundamental discriminant larger than 1024 there exists a

prime p ≤ D0.45 such that
(
D
p

)
= −1

Proof. Assume to the contrary that no such p exists. Let χ(p) =
(
D
p

)
. Since D is a

fundamental discriminant, χ is a primitive character modD.
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Consider

Sχ(N) =
∑
n≤2N

χ(n)
(

1−
∣∣∣ n
N
− 1
∣∣∣) .

By Theorem 3.3, we have

|Sχ(N)| ≤ φ(D)

D

√
D + 2(ω(D)−1) N√

D
. (3.23)

However, using our assumption that χ(p) 6= −1 for p ≤ D0.45 = B we can calculate

Sχ(N) by separating the sum into χ(n) = 1, 0 and −1. To account for χ(n) = 0 we

sum over the numbers relatively prime to D. The following is true when B2 > 2N :

Sχ(N) =
∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣)− 2

∑
B<p≤2N
χ(p)=−1

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) . (3.24)

Using Lemma 3.2 and (3.23), (3.24) we get

φ(D)

D

√
D + 2(ω(D)−1) N√

D
≥ φ(D)

D
N − 2(ω(D)−2) − 2

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .

(3.25)

Now, letting N = c
√
D for some constant c we get that the inequality in (3.25) is

equivalent to

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2√

D

D

φ(D)

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣)

(3.26)
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Now, using Lemma 3.7 we get that if M =
∏
p≤ 2N

B

p and (D,M) = M
k

then

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

logB

k

φ(k)
=
c
√
D

logB

k

φ(k)
.

Therefore (3.26) becomes

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2c

logB

D

φ(D)

k

φ(k)
(3.27)

Now, since

D

φ(D)

k

φ(k)
=
∏
p≤ 2N

B

p

p− 1
×
∏
p> 2N

B
p|D

p

p− 1
≤ eγ

(
1 +

1

log2
(

2N
B

)) log

(
2N

B

) ∏
p> 2N

B
p|D

p

p− 1
,

then (3.27) becomes

0 ≥ c−1−2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2c

logB
eγ

(
1 +

1

log2
(

2N
B

)) log

(
2N

B

) ∏
p> 2N

B
p|D

p

p− 1
.

(3.28)

Now, let’s pick c = 8. Now, D has at most 19 primes bigger than 2N
B

= 16D0.05

dividing it. We have that 2N
B
> 253 and the product of p

p−1
for the first 19 primes

bigger than 253 is smaller than 1.0642. We also have that for D > 3.26 × 1019,

2ω(D) < D1/4. Also, for D > 1013 we have D
φ(D)

< 2 log logD (Lemma 3.8). Combining

these facts with (3.28) we get the inequality:

0 ≥ 7− 8.5
log logD

D1/4
− 16

logB
eγ

(
1 +

1

log2
(

2N
B

)) log

(
2N

B

)
1.0642. (3.29)
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3.4 Proof the theorem when D ≤ 1024

If we let B = D.45, then 2N
B

= 16D.05 and the right hand side of (3.29) is

0.028836 . . . at D = 1024. Since as D increases, the right hand side increases and

at D = 1024 it is already positive, we have arrived at a contradiction for all D ≥ 1024.

Remark 3.2. This proof with a few modifications would yield that for D a fun-

damental discriminant larger than 1016, there exists a prime p ≤
√
D/2 such that(

D
p

)
= −1. This gives us a proof of Theorem 3.1 without the need of the hybrid case.

3.4 Proof the theorem when D ≤ 1024

Theorem 3.5. For D a fundamental discriminant such that 1596 < D ≤ 1024, there

exists a prime p such that p < D0.45 and
(
D
p

)
= −1.

Proof. Assume to the contrary that no such p exists. Following the same steps as in

the proof for the infinite case we reach (3.26):

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2√

D

D

φ(D)

∑
n≤ 2N

B
(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣)

From the proof of Lemma 3.5 we can get tighter inequalities for the inner sum in

the double sum above. If we combine (3.18) and (3.20) we get:

For n ≤ N
B

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣)

≤ N

n log
(
N
n

) +
(f(N, n) + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
= g1(N, n,B, c1, c2),
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where c1 and c2 come from Table 3.1 in Lemma 3.4 and

f(N, n) = c2 + (log 4)

(
log
(
N
n

)
log
(

2N
n

))− 4c1

(
log
(
N
n

)
log
(

2N
n

))2

. (3.30)

Now, for n > N
B

, using (3.18) we get

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N, n) = g2(N, n,B, c1, c2).

Something that will be important later on in the proof is that f(N, n) is decreasing

whenever n < N/6.09, therefore let’s prove it now:

Claim 3.1. For a fixed integer n, if we let c1 = 0.239818, then for N > 6.09n,

f(N, n) is a decreasing function.

Proof of the Claim: First note that if we let x =
log (N

n )
log ( 2N

n )
, then f(N, n) = c2 +

(log 4)x− 4c1x
2. We note that the maximum occurs when x0 = log 4

8c1
= 0.722576 . . . .

For N > 6.09n we have x > x0 because x increases as N increases. Since f(N, n) is

decreasing once x > x0, then as N grows, f(N, n) decreases.

Now, let c = 7.8, c1 = 0.239818 and c2 = 0.29251. Notice that N = c
√
D depends

only on D and B = D0.45 also depends only on D. Now define

g(n,D) =
1√
D

 g1(N, n,B, c1, c2) : n ≤ N
B

;

g2(N, n,B, c1, c2) : n > N
B
.
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3.4 Proof the theorem when D ≤ 1024

Therefore for B ≥ 10544111, (3.26) becomes

0 ≥ 7.8− 1− 2ω(D) (4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤(15.6)D1/20

(n,D)=1

g(n,D). (3.31)

Now, let M =
∏
p≤41

p and let m = gcd (D,M). Note that since m is squarefree

and 41 is the 13th prime, then there are 213 possible values of m. Now, let’s define a

function A(D,m, ω, u) in the following way

A(D,m, ω, u) = 6.8− 2ω (4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D).

Claim 3.2. Let m be a fixed positive integer. Let U be a fixed real number. Let

M =
∏
p≤41

p. Let D ≤ U be a positive integer such that (D,M) = m. Now let

u =
⌊
(15.6)U1/20

⌋
. Let ω be the maximum number of distinct primes a number below

U can have. If D ≥ 4.05× 1015 then 0 ≥ A(D,m, ω, u).

Proof of the Claim: Let D ≤ U . We have ω(D) ≤ ω. We also have u ≥
⌊
(15.6)D1/20

⌋
.

Now, D ≥ 4.05 × 1015 > 105441111/0.45, therefore B > 10544111 and hence we have

(3.31). Since m|D, if (n,D) = 1 then (n,m) = 1. Also note that g(n,D) ≥ 0.

Combining this with (3.31) we have

0 ≥ 6.8− 2ω(D)(4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤(15.6)D1/20

(n,D)=1

g(n,D)

≥ 6.8− 2ω(4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D) = A(D,m, ω, u).
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For example, when D ≤ 1024, we would have U = 1024. Since any D ≤ 1024 has at

most 18 distinct prime factors, ω = 18. Now, u =
⌊
(15.6)D1/20

⌋
= b247.243c = 247.

Once we fix an m, we get that if D ≥ 4.05× 1015 then 0 ≥ A(D,m, 18, 247).

Therefore to reach a contradiction we must find values of D for which

A(D,m, 18, 247) > 0.

Once U and m are fixed, it seems that A(D,m, ω, u) is increasing with D. The

only cause for uncertainty comes from the factor D
φ(D)

and from g(n,D). Let’s deal

with this. Let pi be the i-th prime. Note p13 = 41. Since we want to maximize D
φ(D)

(to make A(D,m, ω, u) as small as possible), then we do is consider the product of

the smallest primes bigger than 41 and consider Dv(m) = m×
∏

13<i≤v

pi. Since we also

have to deal with g(n,D), what we will do is make it as big as possible in a range.

Let’s analyze the value of g(n,D):

If n ≤ N
B

, then

g(n,D) =
1√
D

(
N

n log
(
N
n

) +
(f(N, n) + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB

)

=
c

n log
(
c
√
D
n

) +
(f(N, n) + c2)c

n log2
(
c
√
D
n

) − c1n

cD1/10 log2 (D.45)
− n

2cD1/10 log (D.45)

= H1(n,D)−H2(n,D),

where H1(n,D) consists of the two positive terms and H2(n,D) consists of the two

terms being substracted. Now, f(N, n) is decreasing for N > 6.09n. Since n ≤ u =

247 we have that N > 6.09n. Therefore f(N, n) is decreasing, showing that H1(n,D)

is decreasing. H2(n,D) is also a decreasing function, making −H2(n,D) an increasing

function.
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3.4 Proof the theorem when D ≤ 1024

Now, for n > N
B

, we have

g(n,D) =
1√
D

(
N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N, n)

)

=
c

2n log
(
c
√
D
n

) +
cf(N, n)

n log2
(
c
√
D
n

) = H3(n,D).

Again, because f(N, n) is decreasing, the right hand side is decreasing.

All of this allows us to get the following claim:

Claim 3.3. If D,D1, D2 are positive reals such that D ∈ [D1, D2), then

g(n,D) ≤ G(n,D1, D2) :=


H1(n,D1)−H2(n,D2) n ≤ cD0.05

1 ;

H3(n,D1) n > cD0.05
2 ;

max {H1(n,D1)−H2(n,D2), H3(n,D1)} otherwise.

Proof of the Claim: If n ≤ cD0.05
1 , then for any D ∈ [D1, D2) we have n ≤ N

B
, therefore

g(n,D) = H1(n,D)−H2(n,D). But, since both H1 and H2 are decreasing functions,

we have g(n,D) ≤ H1(n,D1)−H2(n,D2).

If n > cD0.05
2 , then for any D ∈ [D1, D2) we have n > N

B
, therefore g(n,D) =

H3(n,D). Since H3 is decreasing we have g(n,D) ≤ H3(n,D1).

For the few values of n such that cD0.05
1 < n ≤ cD0.05

2 , we just take the maximum,

so we have g(n,D) ≤ max {H1(n,D1)−H2(n,D2), H3(n,D1)}.

Now, let’s define a function similar to A called A2 so that we can take this into

account.

A2(D,m, ω, u,D1, D2) = 6.8− 2ω (4.15)√
D1

D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

G(n,D1, D2). (3.32)
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3.4 Proof the theorem when D ≤ 1024

Claim 3.4. Let D be a positive integer. Let m be defined the same way as in Claim

3.2. Let v be an integer ≥ 13 such that Dv(m) ≥ 4.05 × 1015. Let D1 and D2 be

real numbers such that [D1, D2) ⊆ [Dv(m), Dv+1(m)). Let ω = ω(m) + v − 13. Let

u = b(15.6)D0.05
2 c. Then, if D ∈ [D1, D2), we have 0 ≥ A2(Dv(m),m, ω, u,D1, D2).

Proof of the Claim: Since m|D and D < Dv+1(m) then ω(D) < ω(m) + v+ 1− 13 ≤

ω(m) + v − 13 = ω. We also have

D

φ(D)
=

m

φ(m)

∏
p>p13
p|D

p

p− 1
≤ m

φ(m)

∏
13<i≤v

pi
pi − 1

=
Dv(m)

φ(Dv(m))
.

From Claim 3.3, we have g(n,D) ≤ G(n,D1, D2). Also, from Claim 3.2 using

U = D2 and because ω(D) ≤ ω, we have for D ≥ 4.05 × 1015, the inequality 0 ≥

A(D,m, ω, u).

Therefore, we have

0 ≥ A(D,m, ω, u) = 6.8− 2ω(4.15)√
D

D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D)

≥ 6.8− 2ω(4.15)√
D1

Dv(m)

φ(Dv(m))
− 2Dv(m)

φ(Dv(m))

∑
n≤u

(n,m)=1

G(n,D1, D2)

= A2(Dv(m),m, ω, u,D1, D2).

What this allows us to do is just check A2(D,m, ω, u,D1, D2) for some numbers

and cover a whole interval. Our implementation will run by checking

A2(Dv(m),m, ω, u,Dv(m), Dv+1(m)), where ω = ω(m) + v − 13 and

u = b(15.6)Dv+1(m)c. The process is then to find for each m the first v such that
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3.4 Proof the theorem when D ≤ 1024

A2(Dv(m),m, ω, u,Dv(m), Dv+1(m)) > 0 and

A2(Dv+i(m),m, ω, u,Dv+i(m), Dv+i+1(m)) > 0 for all positive integers i whileDv+i(m) ≤

1024. We will denote this Dv(m) by K(m). Now, we find the maximum K(m) among

the 213 possible m’s. We denote this maximum by K and we note that for all D ≥ K

with D ≤ 1024 we have A(D,m, ω, u) > 0, giving us a contradiction, yielding the

desired theorem for D ≥ K.

Since the odd cases are easier than the even ones (because D/φ(D) is smaller

when D is odd), we split the process in dealing with the odd D’s first and then with

the even D’s. After running a loop that computes K(m) for every odd m and finds

the maximum value K, we find that K = 21853026051351495 < 2.2 × 1016. This

implies that for all D ≥ 2.2 × 1016, odd fundamental discriminants, the theorem is

true. Since we had already dealt with the case D ≤ 2.6× 1017, this finishes the proof

for odd D.

Now let’s consider the case where D is even. In this case our goal is to prove

it for all D ≥ 1.04 × 1018, since we have computational tables proving the smaller

D. Just as in the case for odd m, we run a loop that computes K(m) for every

even m and then find the maximum among this, which we call K. In this case,

K = 1707159924755154870 < 1.71 × 1018. Note that K is slightly larger than our

desired outcome since it doesn’t lead us all the way down to 1.04× 1018. This forces

us to work a little harder to reach the theorem.

To get rid of this new obstacle we use the fact that in Claim 3.4 we have more

flexibility than we’ve been using. We need not have D1 = Dv(m) and D2 = Dv+1(m)

as we have been using so far, we could pick values in between. First of all, I found

all the m values that have D(m,U) > 1.04 × 1018. There are only twelve values of
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3.4 Proof the theorem when D ≤ 1024

m. By the nature of the process the twelve counterexamples are of the form Dv(m).

Seven of the examples have v = 20 and the other five have v = 19. Therefore

what we can do is consider D1 = 32Dv−1(m) and D2 = Dv(m). After evaluating

A(Dv(m),m, ω, u,D1, D2) for these twelve m’s, we find that all of them are greater

than zero. Finishing the proof for even values.

Combining the result for even and odd values yields the theorem.

As an extra note, this naive algorithm runs in around 15 minutes on a Pentium(R)

Dual-Core CPU E5300 @ 2.60GHz. The coding involved in this proof is in the ap-

pendix.

Remark 3.3. With the same techniques we can prove that for D a fundamental

discriminant satisfying D > 1024, there exists a prime p such that p ≤ D3/7 and the

Kronecker symbol (D/p) = −1. Computations on pseudosquares (see [42] and [46])

suggest that sieving machines can check for the values below 1024 (such as MSSU

computed the values under 1018).
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Chapter 4

The least k-th power non-residue

Let p be a prime and let k be an integer with k | p − 1 and k > 1. Let g(p, k) be

the least k-th power non residue mod p. Karl Norton [31], building on a technique

of Burgess [7], was able to show that g(p, k) ≤ 3.9p1/4 log p unless k = 2 and p ≡ 3

(mod 4) for which he showed g(p, k) ≤ 4.7p1/4 log p.

Let h and w be any positive integers, and let χ be a character mod p of order

k, that is, k is the smallest positive integer such that χk is the principal character.

Define

Sw(p, h, χ, k) :=

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

. (4.1)

Norton’s proof uses an inequality discovered by Burgess [6], namely that

Sw(p, h, χ, k) < (4w)w+1phw + 2wp1/2h2w.

Norton made some modifications to a clever argument of Burgess, to get an explicit

lower bound for Sw(p, h, χ, k) depending on g(p, k). This allowed him to get the above

stated upper bound on g(p, k).
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4.1 Burgess–Booker upper bound

Inspired by a paper of Booker [4] that deals with the quadratic case in the Burgess

inequality, we improve the upper bound on (4.1); allowing us to improve the upper

bound on g(p, k).

In section 4.1 we will prove our upper bound on Sw(p, h, χ, k). In section 4.2 we

will write down Norton’s lower bound for (4.1) with some modifications. In the last

section of this chapter we combine the upper bound from section 4.1 with the lower

bound from section 4.2 to prove our main theorem.

Theorem 4.1. Let p > 3 be an odd prime. Let k ≥ 2 be an integer such that k | p−1.

Let g(p, k) be the least k-th power non-residue mod p. Then

g(p, k) < 0.9p1/4 log p,

unless k = 2 and p ≡ 3 (mod 4), in which case

g(p, 2) ≤ 1.1p1/4 log p.

A similar bound was announced but not proven by Norton (see [32]), namely that

g(p, k) ≤ 1.1p1/4(log p+ 4).

4.1 Burgess–Booker upper bound

Definition 4.1. Let p > 2 be a prime and let l1, l2, . . . , l2w be fixed integers. Then

define q(x) ∈ Fp(x) as follows:

q(x) = (x+ l1)(x+ l2) · · · (x+ lw)(x+ lw+1)p−2(x+ lw+2)p−2 · · · (x+ l2w)p−2.
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4.1 Burgess–Booker upper bound

Abusing notation, we will consider it as a rational function:

q(x) =
(x+ l1)(x+ l2) · · · (x+ lw)

(x+ lw+1)(x+ lw+2) · · · (x+ l2w)
.

Note that if k | p − 1, the polynomial form for q(x) is a k-th power if and only

if the rational form for q(x) is a k-th power, and this is the key reason I treat the

simpler-looking rational form. I was motivated to look at it this way by the exposition

by Iwaniec and Kowalski (see [22]) of the Burgess inequality.

Definition 4.2. Let p be a prime. Let w, h and k be integers such that h ≤ p and

k | p− 1. Let [h] = {0, 1, 2, . . . , h− 1}. Let q(x) be defined as in Definition 4.1. Then

define bw(p, h, k) as follows:

bw(p, h, k) =
∣∣∣{(l1, l2, . . . , l2w) ∈ [h]2w

∣∣∣ q(x) is a k-th power ∈ Fp(x)
}∣∣∣ .

Lemma 4.1. Let p be a prime. Let w, h and k be integers such that h ≤ p, k ≥ 2

and k | p− 1. Let bw(p, h, k) be defined as in Definition 4.2. Then

bw(p, h, k) ≤
bwk c∑
d=0

(
w!

d!(k!)d

)2
hw−(k−2)d

(w − kd)!
.

Proof. Let q(x) be defined as in Definition 4.1. One way of bounding how many 2w-

tuples make q(x) a k-th power in Fp(x) is the following: given a tuple, we eliminate

the terms from the numerator that appear also in the denominator. We do this

until there are no more eliminations to be done. Let’s say that the number of terms

eliminated is t. Then t is an integer such that 0 ≤ t ≤ w. Now for q(x) to be a k-th

power the numerator and the denominator must each be a k-th power.
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4.1 Burgess–Booker upper bound

Fix t. The number of ways of getting t eliminations is bounded above by

(
w

t

)2

t!ht. (4.2)

The reason for this count is that we are picking t elements from the numerator to

be matched up with t elements from the denominator. To pick the 2t factors that will

be paired up we have
(
w
t

)2
ways of doing it. But now we have t! ways of associating

a one to one map between the t elements in the numerator and the t elements in the

denominator. Once we have the t pairs, then there are at most ht ways of picking the

values for each pair, giving us the stated upper bound.

Now, let’s calculate the number of ways in which the remaining parts of the

the numerator can be a k-th power. First notice that if t 6≡ w (mod k), then the

remaining parts of the numerator cannot be a kth power. Therefore, we should

assume t ≡ w mod k. Now, notice that we have h options for the first term. Now we

must select the k − 1 terms that join it to create the k-th power. There are
(
w−t−1
k−1

)
ways of choosing this. Then we pick an element that hasn’t been picked. This element

has h choices. Now we pick its k− 1 partners. We have
(
w−t−k−1

k−1

)
ways of doing this.

We keep going until we’re finished. If we let d = (w− t)/k, then the number of ways

is

hd
(
w − t− 1

k − 1

)(
w − t− k − 1

k − 1

)
· · ·
(
k − 1

k − 1

)
=

(w − t)!
(w − t)(w − t− k) · · · (k)

hd

((k − 1)!)d

=
(w − t)!

kd(1 · 2 · · · d)((k − 1)!)d
hd =

(w − t)!
d!(k!)d

hd. (4.3)

Alternatively, we could have reached this formula by picking d groups of size

k using the multinomial
(

w−t
k,k,k,...,k

)
and then dividing by d! since the multinomial
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4.1 Burgess–Booker upper bound

associates an order to the groups being picked. Each group of size k has h options

giving us the same count as in (4.3).

For the remaining parts of the denominator we would have the same estimate with

h replaced by h− 1 (since we already eliminated the common terms). Despite being

able to replace it by h− 1, I will consider it as h to simplify computations.

Combining (4.2) and (4.3) and summing over values of t ≡ w mod k we arrive at

the following upper bound for bw(p, h, k):

∑
0≤t≤w

t≡w mod k

(
(w − t)!
d!(k!)d

)2(
w

t

)2

t!ht+2d =
∑

0≤t≤w
t≡w mod k

(
w!

d!t!(k!)d

)2

t!ht+2d. (4.4)

Using that t = w − dk we can change variables and reach the desired inequality.

Definition 4.3. Let w, h and k be positive integers such that k ≥ 2. Then define

cw(h, k) as follows:

cw(h, k) =

bwk c∑
d=0

(
w!

d!(k!)d

)2
hw−(k−2)d

(w − kd)!
.

Note that for any prime p with k | p − 1, Lemma 4.1 implies that bw(p, h, k) ≤

cw(h, k).

Lemma 4.2. Let w, h and k be positive integers such that k ≥ 2 . Let cw(h, k) be

defined as in Definition 4.3. If w ≤ 9h , then cw(h, k) is a decreasing function in k.

Proof. Since k is an integer greater than or equal to 2, it is enough to show that
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4.1 Burgess–Booker upper bound

cw(h, k) ≤ cw(h, k − 1) for all k ≥ 3. From Definition 4.3 we have

cw(h, k) =

bwk c∑
d=0

(
w!

d!(k!)d

)2
hw−(k−2)d

(w − kd)!
. (4.5)

Now, we arrange the right hand side of (4.5) to look more like cw(h, k − 1), getting:

bwk c∑
d=0

(
w!

d!((k − 1)!)d

)2(
hw−(k−3)d

k2d

)(
1

hd(w − kd)!

)

=

bwk c∑
d=0

(
w!

d!((k − 1)!)d

)2(
hw−(k−3)d

(w − (k − 1)d)!

)(
(w − (k − 1)d)!

k2dhd(w − kd)!

)
.

Now we use that (w−(k−1)d)!
(w−kd)!

≤ wd to get the inequality

cw(h, k) ≤
bwk c∑
d=0

(
w!

d!((k − 1)!)d

)2(
hw−(k−3)d

(w − (k − 1)d)!

)( w

k2h

)d
≤ cw(h, k − 1).

The last step being true because w ≤ 9h and because k ≥ 3.

The following corollary is an obvious consequence:

Corollary 4.1. Let w, h and k be positive integers such that k ≥ 2. Let cw(h, k) be

defined as in Definition 4.3. If w ≤ 9h , then cw(h, k) ≤ cw(h, 2).

Now we will prove a combinatorial identity (and a corollary) that will be used

later, but it is a cute result on its own.

Lemma 4.3. Let w be a positive integer. Then

bw2 c∑
d=0

1

(w − 2d)!

(
w!

2dd!

)2

=
(2w)!

2ww!
. (4.6)
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4.1 Burgess–Booker upper bound

Proof. The proof will be done by counting the number of partitions of {1, 2, . . . , 2w}

into w pairs in two ways. It is worth noting that the way to count the left hand side

of (4.6) was done in Lemma 4.1 when k = 2, however we’ll give a different exposition

of the count below to perhaps make the combinatorics clearer.

Let’s count the number of partitions. There are 2w−1 choices to pair the number

1. Then pick the next lowest number not picked. There are 2w − 3 ways of choosing

its partner. Then pick the next lowest number not picked. There are 2w − 5 ways of

choosing its partner. If we continue with this process, we get

(2w − 1)(2w − 3) · · · (3)(1) =
(2w)(2w − 1)(2w − 2) · · · (2)(1)

(2w)(2(w − 1)) · · · (4)(2)
=

(2w)!

2ww!
.

Notice that this is the right hand side of the equation.

Now, let’s count the number of partitions differently. Consider the pairs as (i, j)

with 0 < i < j ≤ 2w. Now let P be a partition of {1, 2, . . . 2w} into w pairs. Define

A(P ), B(P ) and C(P ) in the following way:

• A(P ) = {(i, j) ∈ P | 0 < i < j ≤ w}

• B(P ) = {(i, j) ∈ P |w < i < j ≤ 2w} and

• C(P ) = {(i, j) ∈ P | 0 < i ≤ w < j ≤ 2w}

We can see by the construction that A(P ), B(P ) and C(P ) are pairwise disjoint. We

can also notice that P = A(P ) ∪ B(P ) ∪ C(P ). Let |A(P )| = d. Then the w − 2d

numbers ≤ w which are not in A(P ) must be paired with numbers > w. Therefore

|C(P )| = w − 2d and |B(P )| = d. Therefore a way of counting the number of

partitions is by counting for each choice of d with 0 ≤ d ≤
⌊
w
2

⌋
the number of ways
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4.1 Burgess–Booker upper bound

of getting A(P ), B(P ) and C(P ). The number of ways of pairing up in this way is

(
(2d)!

2dd!

)(
(2d)!

2dd!

)(
w

w − 2d

)2

(w − 2d)! =
1

(w − 2d)!

(
w!

2dd!

)2

Once we sum over all d we get the left hand side of the equation, completing the

proof.

Corollary 4.2. Let w be a positive integer. Then

bw2 c∑
d=0

(
w

d

)(
w − d
d

)
2w−2d =

(
2w

w

)
.

Proof. Multiply both sides of equation (4.6) by 2w

w!
. The right hand side of the equa-

tion becomes

(2w)!

2ww!

(
2w

w!

)
=

(2w)!

w!w!
=

(
2w

w

)
.

The left hand side becomes

2w

w!

bw2 c∑
d=0

1

(w − 2d)!

(
w!

2dd!

)2

=

bw2 c∑
d=0

w!2w−2d

d!d!(w − 2d)!
=

bw2 c∑
d=0

(
w

d

)(
w − d
d

)
2w−2d.

Theorem 4.2. Let p be a prime. Let w, h and k be integers such that w ≤ 9h, h ≤ p,

k ≥ 2 and k | p− 1. Let χ be a character (mod p) of order k. Then

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

<
(2w)!

2ww!
phw + (2w − 1)p1/2h2w.
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4.1 Burgess–Booker upper bound

Proof. Let q(x) be defined as in Definition 4.1. Using that |z|2 = zz̄ and that χ̄(n) =

χ(n)p−2 allows us to rewrite Sw(p, h, χ, k) in terms of q(x) as follows:

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

=
∑
l1,...l2w

0≤li≤h−1

p∑
x=1

χ (q(x)) .

If q(x) is not a k-th power ∈ Fp(x) then using the Weil bound [39, Theorem 2C’,

page 43], we can bound the inner sum by (r−1)
√
p, where r is the number of distinct

roots of q(x) which do not have multiplicity a multiple of k. In particular, we can

bound the inner sum by (2w − 1)
√
p. When q(x) is a k-th power, then we use the

trivial bound for p.

Using this analysis, we can now bound Sw(p, h, χ, k) by placing the bound (2w −

1)
√
p when q(x) is not a k-th power and p otherwise. Combining this with w ≤ 9h

yields

Sw(p, h, χ, k) ≤ (2w − 1)h2w√p+ bw(p, h, k)p ≤ (2w − 1)h2w√p+ cw(h, 2)p. (4.7)

Now, let’s calculate cw(h, 2):

cw(h, 2) =

bw2 c∑
d=0

(
w!

d!2d

)2
hw

(w − 2d)!
=

(2w)!

2ww!
hw, (4.8)

the last equality coming from Lemma 4.3.

Combining (4.7) and (4.8) we get the desired inequality.

Remark 4.1. From the proof we could derive a better upper bound when k > 2,
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4.2 Burgess–Norton lower bound

which is

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

< cw(h, k)phw + (2w − 1)p1/2h2w. (4.9)

4.2 Burgess–Norton lower bound

Let’s start with a couple of lemmas that will be required in our lower bound estimate.

Lemma 4.4. Let x ≥ 1 be a real number. Then

x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 3

π2
x2 − x. (4.10)

Proof. Let’s estimate the sum.

x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) =
∑
q≤x

(
x

q
− 1

)
φ(q) =

∑
q≤x

(
x

q
− 1

)∑
d|q

µ(d)q

d

=
∑
d≤x

µ(d)

d

∑
q≤x

d

(x− dq) =
∑
d≤x

µ(d)

d

(
x
⌊x
d

⌋
−
dbx

d
c
(
bx
d
c+ 1

)
2

)
.

Now, writing bx
d
c = x

d
− {x

d
}, we get

∑
d≤x

µ(d)

d

(
x2

2d
− x

2
+
d{x

d
}
(
1− {x

d
}
)

2

)

=
x2

2

(
∞∑
d=1

µ(d)

d2
−
∑
d>x

µ(d)

d2

)
− x

2

∑
d≤x

µ(d)

d
+

1

2

∑
d≤x

µ(d)
{x
d

}(
1−

{x
d

})
.
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4.2 Burgess–Norton lower bound

Now, since
∞∑
d=1

µ(d)

d
=

6

π2
and since 0 ≤

{
x
d

} (
1−

{
x
d

})
≤ 1

4
, we have

x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 3

π2
x2 − x2

2

∑
d>x

µ(d)

d2
− x

2

∑
d≤x

µ(d)

d
− 1

8

∑
d≤x

d squarefree

1. (4.11)

Claim 4.1. For real x ≥ 1, ∣∣∣∣∣∑
d>x

µ(d)

d2

∣∣∣∣∣ ≤ 1

x
.

Proof of the Claim: Note that for any positive integer d we have that 1
d2

is smaller

than

∫ d+1/2

d−1/2

dt

t2
. Thus

∣∣∣∣∣∑
d>x

µ(d)

d2

∣∣∣∣∣ ≤∑
d>x

∫ d+ 1
2

d− 1
2

dt

t2
=

∫ ∞
x− 1

2

dt

t2
=

1

x− 1
2

.

To change x − 1/2 into x, note that there is at least one d missing in the interval

[x, x + 4], since we only take squarefree d’s in the sum. Thus the absolute value of

the sum is smaller than 1
x− 1

2

− 1
(x+4)2

. This is smaller than 1
x

once x ≥ 11, proving

the claim for real x ≥ 11. To complete the proof for x ≥ 1 we use the fact that
∞∑
d=1

µ(d)

d2
=

6

π2
, which implies that

∑
d>x

µ(d)

d2
=

6

π2
−
∑
d≤x

µ(d)

d
. One can now manually

check the integer cases where 1 ≤ x ≤ 11 and note that

∣∣∣∣∣∑
d>x

µ(d)

d2

∣∣∣∣∣ < 1
x+1

, which

implies the claim for real x ≤ 11.

Claim 4.2. For real x ≥ 1, the number of squarefree integers in [1, x] is at most

2
3
x+ 2.
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4.2 Burgess–Norton lower bound

Proof of the Claim: The number of squarefree numbers up to x is at most

bxc −
⌊x

4

⌋
−
⌊x

9

⌋
+
⌊ x

36

⌋
≤ 2

3
x+ 2.

Claim 4.3. For real x ≥ 1,

∣∣∣∣∣∑
d≤x

µ(d)

d

∣∣∣∣∣ ≤ 2

3
+

3

x
.

Proof of the Claim: The proof here is a modified version of a proof of Hildebrand

[19]. Let e(n) = 1 if n = 1 and e(n) = 0 otherwise. Let S(x) =
∑

n≤x e(n). Then

S(x) = 1. However, we also have

S(x) =
∑
n≤x

∑
d|n

µ(d) =
∑
d≤x

µ(d)
⌊x
d

⌋
= x

∑
d≤x

µ(d)

d
−
∑
d≤x

µ(d)
{x
d

}
.

Therefore,

x

∣∣∣∣∣∑
d≤x

µ(d)

d

∣∣∣∣∣ ≤
∣∣∣∣∣1 +

∑
d≤x

µ(d)
{x
d

}∣∣∣∣∣ ≤ 2

3
x+ 3.

To prove the last inequality we used that the number of squarefree numbers up to x

is at most 2
3
x+ 2, which was proven in the previous claim.

Combining Claims 4.1, 4.2 and 4.3 with (4.11) we have

x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 3

π2
x2 − 11

12
x− 7

4
≥ 3

π2
x2 − x,

where the last inequality holds for x ≥ 21.

For x ≤ 3, the right hand side of (4.10) is negative, while the left hand side is

positive, therefore the inequality is true for x ≤ 3. Now, for the integers 3 ≤ x ≤ 21
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4.2 Burgess–Norton lower bound

we can manually check that

x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 3

π2
(x+ 1)2 − (x+ 1).

Since the right hand side of (4.10) is increasing for x ≥ 3, we have a proof for all real

x ≤ 21.

Lemma 4.5. Let x ≥ 1 be a real number. Then

2x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 9

π2
x2 − x

(
log x

3
+ 3

)
. (4.12)

Proof. Doing the estimates the same way as in Lemma 4.5, we get

2x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q)

=
9

π2
x2−3x2

2

∑
d>x

µ(d)

d
−x

2

∑
d≤x

µ(d)

d
−x
∑
d≤x

µ(d)

d

{x
d

}
+

1

2

∑
d≤x

{x
d

}(
1−

{x
d

})
µ(d).

(4.13)

Claim 4.4. For real x ≥ 1,

x
∑
d≤x

µ(d)

d

{x
d

}
− 1

2

∑
d≤x

{x
d

}(
1−

{x
d

})
µ(d) ≤ 1

3
x log x+

11

10
x+

3

2
.

Proof of the Claim: We have

x
∑
d≤x

µ(d)

d

{x
d

}
− 1

2

∑
d≤x

{x
d

}(
1−

{x
d

})
µ(d) =

∑
d≤x

µ(d)
{x
d

}(x
d
−

1−
{
x
d

}
2

)
.

(4.14)

Note, that all factors except µ(d) are positive, which implies that we can bound (4.14)
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4.2 Burgess–Norton lower bound

by ∑
d≤x

µ(d)=1

{x
d

}(x
d
−

1−
{
x
d

}
2

)
≤ x

∑
d≤x

µ(d)=1

1

d
. (4.15)

Note that log x ≤
∑
d≤x

1

d
≤ log x + 1. Now, let’s bound the sum over squarefree

numbers:

∑
d≤x

d squarefree

1

d
≤
∑
d≤x

1

d
− 1

4

∑
d≤x

4

1

d
− 1

9

∑
d≤x

9

1

d
+

1

36

∑
d≤ x

36

1

d

≤ 2

3
log x+ 1 +

1

36
+

log 4

4
+

log 9

9
− log 36

36
≤ 2

3
log x+

23

15
.

However, ∑
d≤x

d squarefree

1

d
=
∑
d≤x

µ(d)=1

1

d
+

∑
d≤x

µ(d)=−1

1

d
≤ 2

3
log x+

23

15
, (4.16)

and ∑
d≤x

µ(d)

d
=
∑
d≤x

µ(d)=1

1

d
−

∑
d≤x

µ(d)=−1

1

d
≤ 2

3
+

3

x
. (4.17)

The last inequality being true because of Claim 4.3. Adding (4.16) and (4.17), dividing

by 2, and using (4.14) and (4.15) we get our claim.

Now, using the results of Claims 4.1, 4.3 and 4.4 in (4.13) yields

2x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 9

π2
x2−x

(
log x

3
+

3

2
+

1

3
+

11

10

)
−3 ≥ 9

π2
x2−x

(
log x

3
+ 3

)
,

where the last inequality is true we get for x ≥ 45.

For x ≤ 3, the right hand side of (4.12) is negative, while the left hand side is

positive, therefore the inequality is true for x ≤ 3. Now, for the integers 3 ≤ x ≤ 45
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4.2 Burgess–Norton lower bound

we can manually check that

2x
∑
q≤x

φ(q)

q
−
∑
q≤x

φ(q) ≥ 9

π2
(x+ 1)2 − (x+ 1)

(
log (x+ 1)

3
+ 3

)
.

Since the right hand side of (4.12) is increasing for x ≥ 3, we have a proof for all real

x ≤ 45.

We now have the ingredients to prove the lower bound on Sw(p, h, k).

Theorem 4.3. Let p be a prime. Let χ be a character (mod p) of order k. Assume

that χ(a) = 1 for all 1 ≤ a < H. Let h and w be positive integers such that 4 ≤ h ≤ H.

Let X = H/h and let A = 3
π2 . Then

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥ 2h2w−1AH2

(
1− 1

2AX

)
.

Furthermore, if −1 is a k-th power, then

Sw(p, h, χ, k) ≥ 3h2w−1AH2

(
1−

logX
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)
.

Proof. We follow the proof in [31] with some minor modifications. The idea is to find

long intervals where χ is constant (either 1 or −1), making the inner sum as big as

possible in a segment.

Claim 4.5. If χ(a) = 1 for all 1 ≤ a < H, then H <
√
p+ 1.

Proof of the Claim: We use an argument that was mentioned by Western and Miller

(see [45]) and by Norton [31]. Assume that H ≥ √p + 1. Let q = g(p, k). Note that
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4.2 Burgess–Norton lower bound

q ≥ H. Let r =
⌈
p
q

⌉
. Note that p < rq < p+ q, therefore rq is a k-th power mod p.

Since q ≥ √p+ 1, then

r =

⌈
p

q

⌉
≤
⌈

p
√
p+ 1

⌉
≤ d√pe < √p+ 1 ≤ q.

Therefore, r < q, which means r is a k-th power. Since r and rq are k-th powers,

then q must be a k-th power. But this is a contradiction. Therefore q <
√
p+ 1 and

hence H <
√
p+ 1.

For each pair of integers t, q with

0 ≤ t < q ≤ X and gcd(t, q) = 1, (4.18)

define I(q, t) to be the closed interval

I(q, t) =

[
tp−H
q

,
tp+H

q

]
.

Claim 4.6. The intervals I(q, t) are disjoint.

Proof of the Claim: Let’s assume that I(q1, t1) and I(q2, t2) contain a common element

s, so that |s− tip
qi
| ≤ H

qi
for i = 1, 2. Thus, | t1p

q1
− t2p

q2
| ≤ H

q1
+ H

q2
. This leads to

|t1q2 − t2q1| ≤
(q1 + q2)H

p
≤ 2HX

p
=

2H2

hp
< 1.

The last inequality comes from H <
√
p+ 1, h ≥ 4 and p ≥ 2.

Now, since |t1q2 − t2q1| < 1 and t1, t2, q1, q2 are integers, we have t1q2 = t2q1. But

gcd(q1, t1) = 1 and gcd(q2, t2) = 1, therefore t1 = t2 and q1 = q2 proving the claim.
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4.2 Burgess–Norton lower bound

Claim 4.7. Each I(q, t) ⊂ [−H,−H + p).

Proof of the Claim: Since t ≥ 0 and p ≥ 2, we have tp−H
p
≥ −H

p
≥ −H. Now, since

t < q, we have t ≤ q − 1, therefore

tp+H

q
≤ (q − 1)p+H

q
= p− p−H

q
≤ p− p−H

X
= p− (p−H)h

H
.

In the inequalities we used q ≤ X and that X = H/h. To finish proving the claim

we will use that h ≥ 4:

tp+H

q
≤ p− (p−H)h

H
≤ p− 4(p−H)

H
< p−H.

The last inequality is true because H <
√
p + 1 and 4 ≤ h ≤ p and therefore

H2 + 4H < p+ 6
√
p+ 1 < 4p, which is true for p ≥ 5. Therefore, we have proved the

claim.

Using the periodicity of χ and Claims 4.6 and 4.7 we have the following:

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

=
∑

−H≤m<−H+p

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥
∑
q,t

∑
m∈I(q,t)

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

=
∑
q,t

∑
m∈I(q,t)

∣∣∣∣∣
h−1∑
l=0

χ(q(m+ l)− tp)

∣∣∣∣∣
2w

. (4.19)

The sum is over all pairs (q, t) satisfying (4.18). Note that χ(q) = 1 because 0 <

q ≤ X < H. The last equality in (4.19) comes from χ(m + l) = χ(q)χ(m + l) =

χ(q(m+ l)) = χ(q(m+ l)− tp) (it is only needed that χ(q) 6= 0, for (4.19) to be true).
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4.2 Burgess–Norton lower bound

For q, t satisfying (4.18), let J(q, t) and K(q, t) be defined as follows:

J(q, t) =

[
tp−H
q

,
tp

q
− h+ 1

)

and

K(q, t) =

(
tp

q
,
tp+H

q
− h+ 1

]
.

If m ∈ J(q, t), then for 0 ≤ l ≤ h − 1 we have 0 < tp − q(m + l) ≤ H, therefore

χ(q(m+ l)− tp)) = χ(−1)χ(tp− q(m+ l)) = χ(−1).

Similarly, if m ∈ K(q, t), then for 0 ≤ l ≤ h − 1 we have 0 < q(m + l) − tp ≤ H

and hence χ(q(m+ l)− tp) = χ(1) = 1.

Since each of J(q, t), K(q, t) contains at least H
q
−h integers (note that q ≤ X = H

h

and hence H
q
≥ h) then we can place a lower bound on Sw(p, h, χ, k) as follows:

Sw(p, h, χ, k) ≥ 2
∑
q,t

(
hX

q
− h
)
h2w

= 2h2w+1

(
X
∑

1≤q≤X

φ(q)

q
−
∑

1≤q≤X

φ(q)

)
≥ 2AX2h2w+1

(
1− 1

2AX

)
. (4.20)

The last inequality being Lemma 4.4. Once we make the substitution of X = H
h

we

get the desired inequality.

If −1 is a k-th power (mod p), we can improve (4.20). Instead of using J(q, t)

and K(q, t), we simply consider the interval

L(q, t) =

[
tp−H
q

,
tp+H

q
− h+ 1

]
.

If m ∈ L(q, t), then for 0 ≤ l ≤ h−1, we have −H ≤ q(m+ l)−tp ≤ H, and hence
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4.3 Main theorem

χ(q(m+ l)− tp) = 1 unless q(m+ l) = tp. Since q > t ≥ 0, then 0 ≤ m+ l = t
q
p < p.

But p | q(m + l) implies that m + l = 0, and so t = 0. Because of the coprimality

condition, t = 0 implies q = 1. In this latter case, we omit those values of m for

which there is an l with m+ l = 0, and we get

Sw(p, h, χ, k) ≥
∑

−H≤m≤−h

h2w +
∑

1≤m≤H−h+1

h2w +
∑
q,t
q>1

∑
m∈L(q,t)

h2w

≥ (2(H − h) + 1)h2w +
∑

1<q≤X

∑
0≤t<q

gcd(t,q)=1

(
2H

q
− h
)
h2w.

From this and X = H
h

, it follows that if −1 is a k-th power (mod p), then

Sw(p, h, χ, k) ≥ h2w+1

(
2X

∑
1≤q≤X

φ(q)

q
−
∑

1≤q≤X

φ(q)− 1 +
1

h

)

≥ 3AX2h2w+1

(
1−

log x
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)
.

The last inequality being Lemma 4.5. Once we make the substitution of X = H
h

we

get the desired inequality.

4.3 Main theorem

Before we prove our main theorem, we need a lemma:

Lemma 4.6. Let p be a prime. Let k > 1 be an integer such that k | p − 1. If

d = gcd
(
k, p−1

2

)
and d ≥ 2, then −1 is a d-th power and furthermore g(p, k) ≤ g(p, d).

Proof. Let r be a primitive root (mod p). Then r
p−1
2 ≡ −1 (mod p). Since d | p−1

2
,
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4.3 Main theorem

then −1 is a d-th power. Now note that if a < g(p, k), then a is a k-th power and

hence a d-th power since d | k, therefore g(p, d) ≥ g(p, k).

Note that d ≥ 2 unless k = 2 and p ≡ 3 (mod 4).

The following theorem will deal with the large cases of our main theorem. The

main theorem will be split into cases after proving this theorem.

Theorem 4.4. Let p be an odd prime. Let k ≥ 2 be an integer such that k | p − 1

and let p ≥ p0. Then

g(p, k) < β(p0)p1/4 log p,

unless k = 2 and p ≡ 3 (mod 4), in which case

g(p, 2) ≤ α(p0)p1/4 log p,

where β(p0) and α(p0) are constants depending only on p0 described in Table 4.1.

p0 β(p0) α(p0)
107 1.27188 1.46048
108 1.18098 1.39566
109 1.12507 1.35024
1010 1.08759 1.31654
1012 1.04060 1.26945
1015 1.00115 1.22520
1020 0.96549 1.18242
1030 0.93104 1.14029
1040 0.91397 1.11938
1050 0.90377 1.10689
1060 0.89699 1.09858

Table 4.1: Upper bound for the least k-th power non-residue.
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4.3 Main theorem

We remark that from the proof, one can show that α(p0) →
√

e
8A

= π
2

√
e
6

=

1.05728 . . . and β(p0)→
√

e
12A

= π
6

√
e = 0.863268 . . . as p0 →∞.

Proof. Let χ be a character (mod p) of order k. Assume that χ(a) = 1 for all

1 ≤ a < H. Let h and w be positive integers such that 4 ≤ h ≤ H. Let X = H/h

and let A = 3
π2 . Then by Theorem 4.3

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥ 2h2w−1AH2

(
1− 1

2AX

)
.

If w ≤ 9h, we have from Theorem 4.2

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

<
(2w)!

2ww!
phw + (2w − 1)p1/2h2w. (4.21)

Combining these two we get that

2AH2

(
1− 1

2AX

)
<

(2w)!

2ww!
ph1−w + (2w − 1)p1/2h = f(w, h), (4.22)

is true for all positive integers h and w satisfying 4 ≤ h ≤ H and w ≤ 9h.

Note that if we want to have H as small as possible, then we want to minimize

f(w, h), because the left hand side is approximately 2AH2, so H is approximately√
f(w, h)/(2A), where A is a constant.

Because f(w, h) as a function of h is simpler than f(w, h) as a function of w, we

will first fix w and find the optimal h. Since ∂f
∂h

(w, h) = (2w)!
2ww!

p(1−w)h−w+(2w−1)
√
p,

then the optimal h is an integer close to

hw =

((
(2w)!

2w(w)!

)
w − 1

2w − 1

) 1
w

p
1
2w .
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4.3 Main theorem

Now fixing h = hw, we can look for the optimal w by taking the derivative of f(w, h)

with respect to w. Let’s first simplify f(w, h) as follows

f(w, h) =
(2w)!

2ww!

(
h

hw

)
p+ (2w − 1)h

√
p = h

√
p

(
2w + 1 +

1

w − 1

)
. (4.23)

Therefore

∂f

∂w
(w, h) = h

′
(

2w + 1 +
1

w − 1

)
√
p+ h

(
2− 1

(w − 1)2

)
√
p. (4.24)

Since we are looking for w as a function of p, and h is a complicated function, to help

us find the optimal value of w, we will first calculate an approximation for h by using

Stirling’s formula:

h =

(
(2w)!

2ww!

(
w − 1

2w − 1

)) 1
w

p
1
2w =

(
(2w)!

2ww!

(
1

2

)) 1
w

p
1
2w

(
1 +O

(
1

w

))

=

((
2w

e

)w √
2

2

) 1
w

p
1
2w

(
1 +O

(
1

w

))2

=
2w

e

(p
2

) 1
2w

(
1 +O

(
1

w

))
. (4.25)

Therefore

h
′

=

((
2w

e

)(− log p
2

2w2

)(p
2

) 1
2w

+
2

e

(p
2

) 1
2w

)(
1 +O

(
1

w

))
= h

(− log p
2

2w2
+

1

w

)(
1 +O

(
1

w

))
. (4.26)

Letting ∂f
∂w

(w, h) = 0, by substituting h and h
′

from (4.25), (4.26) on (4.24) we find

that we want

− log p

w
+ 4 +O

(
log p

w2

)
+O

(
1

w

)
= 0,
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Yielding that the optimal value of w is asymptotic to log p
4

.

Let

h =

⌊(
(2w)!

2ww!

w − 1

2w − 1

) 1
w

p
1
2w

⌋
+ 1 (4.27)

and

w =

⌊
log p

4

⌋
+ 1. (4.28)

Then

f(w, h) = h
√
p

(
(2w)!

2ww!

√
p

hw
+ 2w − 1

)
< h
√
p

(
2w + 1 +

1

w − 1

)
<

(
(2w)!

2ww!

w − 1

2w − 1

) 1
w
(

2w + 1 +
1

w − 1

)
p

1
2

+ 1
2w + p

1
2

(
2w + 1 +

1

w − 1

)
<

(
2w + 1 +

1

w − 1

)
√
p

(
e2

(
(2w)!

2ww!

w − 1

2w − 1

) 1
w

+ 1

)
. (4.29)

The last inequality is true because p
1
2w < e2.

Note the following explicit inequalities on Stirling’s formula [37] which will help

us deal with the above expression:

(n
e

)n√
2πn e

1
12n+1 < n! <

(n
e

)n√
2πn e

1
12n .

Hence

(
(2w)!

2ww!

) 1
w

<

((
2w

e

)w√
2 e

1
24w
− 1

12w+1

) 1
w

=

(
2w

e

)
2

1
2w e

1
24w2−

1
12w2+w . (4.30)
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Combining (4.30) with (4.29) and using that w−1
2w−1

< 1
2

we get

f(w, h) <

(
2w + 1 +

1

w − 1

)
√
p
(

2we 2−
1
2w e

1
24w2−

1
12w2+w + 1

)
<

(
2w + 1 +

1

w − 1

)
(2we+ 1)

√
p.

Now, the right hand side is increasing in w, so we may just use an upper bound for

w which would be log p
4

+ 1. Using this upper bound yields

f(w, h) <

(
e

4
log2 p+

5e+ 1

2
log p+ 8e+ 3 +

8e+ 4

log p

)
√
p

=

(
e

4
+

5e+ 1

2 log p
+

8e+ 3

log2 p
+

8e+ 4

log3 p

)
√
p log2 p = K(p)

√
p log2 p, (4.31)

where K(p) depends on p and goes to e
4

as p→∞.

Also note

h < 2we+ 1 <
e

2
log p+ (2e+ 1) =

(
e

2
+

2e+ 1

log p

)
log p.

Assume p ≥ p0 and H ≥ α(p0) p1/4 log p. We have α(p0) ≥
√

e
8A

, hence

X =
H

h
≥ α(p0)p1/4 log p(

e
2

+ 2e+1
log p

)
log p

≥
√

e
8A(

e
2

+ 2e+1
log p

)p1/4.

Let X(p0) be defined as

X(p0) =

√
e

8A(
e
2

+ 2e+1
log p0

)p1/4
0 .
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Now let

α(p0) =

√√√√ K(p0)

2A
(

1− 1
2AX(p0)

) .
The left hand side of (4.22) can therefore be bounded from below for p ≥ p0:

2AH2

(
1− 1

2AX

)
≥ 2A (α(p0))2√p log2 p

(
1− 1

2AX(p0)

)

≥ K(p0)
√
p log2 p ≥ K(p)

√
p log2 p > f(w, h),

giving us a contradiction, proving that H < α(p0)p1/4 log p, that is

g(p, k) ≤ α(p0)p1/4 log p.

Now, if −1 is a k-th power we can do better, since by the second part of Theorem

4.3 we have

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥ 3h2w−1AH2

(
1−

logX
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)
.

Combining this with (4.21) we get

3AH2

(
1−

logX
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)
< f(w, h). (4.32)

Assume p ≥ p0 and H ≥ β(p0) p1/4 log p ≥
√

e
12A

p1/4 log p , then we can work just

as before and let

X(p0) =

√
e

12A(
e
2

+ 2e+1
log p0

)p1/4
0 .
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Now let

β(p0) ≥

√√√√√ K(p0)

3A

(
1−

log (X(p0))
3

+3

3AX(p0)
− 1

3AX(p0)2
+ 1

3AX(p0)2h

) .

The left hand side of (4.32) can therefore be bounded from below for p ≥ p0:

3AH2

(
1−

logX
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)

≥ 3A (β(p0))2√p log2 p

(
1−

log (X(p0))
3

+ 3

3AX(p0)
− 1

3AX(p0)2
+

1

3AX(p0)2h

)

≥ K(p0)
√
p log2 p ≥ K(p)

√
p log2 p > f(w, h),

giving us a contradiction, proving that H < β(p0)p1/4 log p, that is

g(p, k) ≤ β(p0)p1/4 log p.

If gcd
(
k, p−1

2

)
= d > 1, then Lemma 4.6 implies that −1 is a d-th power and

g(p, k) ≤ g(p, d) ≤ β(p0)p1/4 log p.

Note that we do need d > 1 as the last inequality is only true for d ≥ 2.

Since gcd
(
k, p−1

2

)
= 1 if and only if k = 2 and p ≡ 3 (mod 4), we conclude the

statement of the theorem. The values of the table for α(p0) and β(p0) were computed

by plugging in the respective values of p0.

We have proved the main theorem for p ≥ 1060. To complete the proof we’ll do it

in four cases:
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• when k = 2 and p ≡ 1 (mod 4) with p ≤ 1025,

• when k = 2 and p ≡ 1 (mod 4) or k ≥ 3, where 1025 < p < 1060.

• when k ≥ 3 with p ≤ 1025, and

• when k = 2 and p ≡ 3 (mod 4) with p < 1060.

To deal with the case where k = 2 and p ≡ 1 (mod 4) we first show that either p

is a (g(p, 2)− 1)-pseudosquare or g(p, 2) = 2. Let’s recall what a pseudosquare is:

Definition 4.4. A positive integer n is called a q-pseudosquare if n ≡ 1 (mod 8)

is not a square and for all odd primes r ≤ q, we have
(
n
r

)
= 1, where

(
n
r

)
is the

Legendre symbol.

Lemma 4.7. For p a prime satisfying p ≡ 1 (mod 4) then either p is a (g(p, 2)− 1)-

pseudosquare or g(p, 2) = 2.

Proof. If p ≡ 5 (mod 8) then 2 is not a square mod p, and hence g(p, 2) = 2. There-

fore, we may assume that p ≡ 1 (mod 8). Note that by the definition of g(p, 2), we

have that
(
r
p

)
= 1 for all odd primes r < g(p, 2). Now, since p ≡ 1 (mod 8), by

quadratic reciprocity we have

(p
r

)
=

(
r

p

)
= 1.

Therefore p is a (g(p, 2)− 1)-pseudosquare.

Proposition 4.1. Let p be a prime such that p ≡ 1 (mod 4) and p ≤ 1025. Then

g(p, 2) ≤ 0.9p1/4 log p.
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Proof. If p ≡ 5 (mod 8), then g(p, 2) = 2 and hence g(p, 2) ≤ 0.9p1/4 log p as long

as p ≥ 5, which is true. Therefore, we may assume p ≡ 1 (mod 8). We know from

Lemma 4.7 that p is a (g(p, 2) − 1)-pseudosquare. In [42], it was shown that for

q ≥ 379, 379-pseudosquares are greater than 1025. Therefore if g(p, 2) ≥ 379, then

p ≥ 1025.

Since the solution to 0.9p1/4 log p = 379 is below 900000, then we need only check

up to 900000 for the cases where g(p, 2) ≤ 379. A simple loop in the computer

confirms that for all these cases we have g(p, 2) ≤ 0.9p1/4 log p, completing the proof

of the proposition.

Proposition 4.2. Let p be prime such that 1025 < p < 1060. If p ≡ 1 (mod 4) and

k = 2 or if k ≥ 3, then g(p, k) ≤ 0.9p1/4 log p.

Proof. To deal with this gap, we’ll choose particular w’s and h’s in f(w, h) (see

(4.23))instead of the values of h and w chosen in Theorem 4.4.

Let A be the constant we’ve been using and let

X(p) =

√
e

12A

h
p1/4.

Let γ(p, w, h) be defined in the following way:

γ(p, w, h) =

√√√√√ f(w, h)

3A
√
p log2 p

(
1−

log (X(p))
3

+3

3A(X(p))
− 1

3A(X(p))2
+ 1

3A(X(p))2h

) .

Then by similar arguments as in Theorem 4.4, we have g(p, k) < γ(p, h, w)p1/4 log p.

Hence, all we want is for γ(p, h, w) to be less than or equal to 0.9. We’ll attack this by

picking particular h’s and w’s in different intervals. To check whether γ(p, h, w) ≤ 0.9,
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w h p w h p w h p
16 76 [1025, 1027] 17 85 [1027, 1029] 17 99 [1029, 1031]
18 106 [1031, 1033] 18 121 [1033, 1035] 21 116 [1035, 1038]
22 131 [1038, 1041] 25 134 [1041, 1044] 29 132 [1044, 1047]
30 141 [1047, 1050] 31 159 [1050, 1054] 34 168 [1054, 1058]
34 180 [1058, 1060]

Table 4.2: Values of h and w chosen to prove that g(p, 2) ≤ 0.9p1/4 log p whenever
p ≡ 1 (mod 4) and 1025 ≤ p ≤ 1060. As an example on how to read the table: when
w = 16 and h = 76, then γ(p, w, h) < 0.9 for all p ∈ [1025, 1027].

we need only check the endpoints of the intervals since γ(p, h, w) is concave up. Table

4.2 completes the proof.

Remark 4.2. The method can also yield g(p, 2) ≤ 0.87p1/4 log p when p ≡ 1 (mod 4).

However, it would require a much longer table to fill up the intervals all the way up

to 10310. It is also worth noting that if we started at 107 instead of 1025 (i.e., if we

didn’t have the result on pseudosquares), then the inequality we would get would be

g(p, 2) ≤ 0.93p1/4 log p, which is not much worse. Showing us that the main ingredient

in the improvement over Norton is not computational power, but improving the upper

bound on the Burgess inequality.

Proposition 4.3. Let p ≤ 1025 be a prime, and let k ≥ 3 be an integer. Then

g(p, k) ≤ 0.9p1/4 log p.

Proof. Note that an upper bound for the least k-th power non-residue is the least

primitive root mod p, since a primitive root cannot be a k-th power. Running a loop

where we check the least primitive root over primes up to 105 reveals that the only
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examples where the primitive root is greater than 0.9p1/4 log p are p = 2, 3, 7 and 191.

For p = 2, it doesn’t make sense to define k-th power non-residue. For p = 3 it only

makes sense when k = 2, but k ≥ 3. For p = 7 it makes sense for k = 2 and k = 3.

Since k ≥ 3, we are left with the k = 3 case. For k = 3, the least cubic non-residue is

2 < (0.9)71/4 log 7. To check what happens with p = 191, I ran a program looping over

the possible k’s (divisors of 190) and found that the least k-th power non-residue is 2

for all k | p− 1 with k ≥ 3. Therefore, for k ≥ 3 and p ≤ 105, g(p, k) ≤ 0.9p1/4 log p.

Therefore we are now in the case where 105 ≤ p ≤ 1025.

Let’s recall (4.9):

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

< cw(h, k)phw + (2w − 1)p1/2h2w.

Since cw(h, k) is decreasing on k and k ≥ 3, we can replace cw(h, k) by cw(h, 3).

Let f2(w, h) be defined as

f2(w, h) := h
√
p

(
2w − 1 + cw(h, 3)

√
p

hw

)

= h
√
p

2w − 1 +

bw3 c∑
d=0

((
w!

d!(3!)d

)2( √
p

hd+w(w − 3d)!

)) .

Then by Theorem 4.3 combined with (4.9), we have that the inequality (4.32)

becomes

3AH2

(
1−

logX
3

+ 3

3AX
− 1

3AX2
+

1

3AX2h

)
< f2(w, h),
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w h p
3 12 [105, 107]
4 16 [107, 109]
6 21 [109, 1012]
8 37 [1012, 1018]
12 47 [1018, 1025]

Table 4.3: Values of h and w chosen to prove that g(p, k) ≤ 0.9p1/4 log p whenever
k ≥ 3 and 105 ≤ p ≤ 1025. As an example on how to read the table: when w = 6 and
h = 21, then γ2(p, w, h) < 0.9 for all p ∈ [109, 1012].

where A is the constant we’ve been using, H ≤ g(p, k) and X = H
h

. Now, let

X(p) =

√
e

12A

h
p1/4.

Let γ2(p, w, h) be defined in the following way:

γ2(p, w, h) =

√√√√√ f2(w, h)

3A
√
p log2 p

(
1−

log (X(p))
3

+3

3A(X(p))
− 1

3A(X(p))2
+ 1

3A(X(p))2h

) .

Then by similar arguments as in Theorem 4.4, we have g(p, k) < γ2(p, h, w)p1/4 log p.

Hence, all we want is for γ2(p, h, w) to be less than or equal to 0.9. We’ll attack this

by picking particular h’s and w’s in different intervals. Table 4.3 completes the proof

of the interval 105 ≤ p ≤ 1025.

Proposition 4.4. Let p > 3 be a prime such that p ≡ 3 (mod 4) and p < 1060. Then

g(p, 2) ≤ 1.1p1/4 log p.
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Proof. Running a loop over primes p ≡ 3 (mod 4) up to 107 reveals that there is only

one counter example, p = 3. Hence for 3 < p ≤ 107, g(p, 2) ≤ 1.1p1/4 log p.

Therefore we are now in the case where 107 < p < 1060. To deal with this gap,

we’ll follow the same strategy as in Proposition 4.1, which is to choose particular w’s

and h’s in f(w, h) and fill up gaps.

As in the proof of Proposition 4.1, let A be the constant we’ve been using and let

X(p) =

√
e

8A

h
p1/4.

Let γ3(p, w, h) be defined in the following way:

γ3(p, w, h) =

√√√√ f(w, h)

2A
√
p log2 p

(
1− 1

2AX(p)

) .
Then by similar arguments as in Theorem 4.4, we have g(p, 2) < γ3(p, h, w)p1/4 log p.

Hence, all we want is for γ3(p, h, w) to be less than or equal to 1.1. We’ll at-

tack this by picking particular h’s and w’s in different intervals. To check whether

γ3(p, h, w) ≤ 1.1, we need only check the endpoints of the intervals, since γ3(p, h, w)

is concave up. Table 4.4 completes the proof.

Combining Propositions (4.1), (4.2), (4.3) and (4.4) yields Theorem 4.1.
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w h p w h p w h p
4 21 [107, 107.6] 5 21 [107.6, 108] 5 24 [108, 109]
6 25 [109, 1010] 7 27 [1010, 1011] 7 34 [1011, 1012]
8 35 [1012, 1013] 9 36 [1013, 1014] 8 44 [1014, 1015]
8 55 [1015, 1016] 9 56 [1016, 1017] 9 64 [1017, 1018]
10 64 [1018, 1019] 12 60 [1019, 1021] 13 67 [1021, 1023]
14 75 [1023, 1025] 16 77 [1025, 1027] 17 85 [1027, 1029]
18 93 [1029, 1031] 19 100 [1031, 1033] 20 108 [1033, 1036]
21 121 [1036, 1039] 24 125 [1039, 1042] 25 140 [1042, 1045]
27 148 [1045, 1048] 28 163 [1048, 1051] 29 177 [1051, 1054]
30 192 [1054, 1058] 31 200 [1058, 1060]

Table 4.4: Values of h and w chosen to prove that g(p, 2) ≤ 1.1p1/4 log p whenever
p ≡ 3 (mod 4) and 107 ≤ p ≤ 1060. As an example on how to read the table: when
w = 10 and h = 64, then γ3(p, w, h) < 1.1 for all p ∈ [1018, 1019].
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Chapter 5

On consecutive residues and

non-residues

Let χ be a non-principal Dirichlet character to the prime modulus p. In 1963, Burgess

showed (see [7]) that the maximum number of consecutive integers for which χ re-

mains constant is O(p1/4 log p). This is the best known asymptotic upper bound on

this quantity. Recently, McGown (see [26]) proved an explicit version of Burgess’s

theorem:

Theorem 5.1. If χ is any non-principal Dirichlet character to the prime modulus p

which is constant on (N,N +H], then

H <

{
πe
√

6

3
+ o(1)

}
p1/4 log p.
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Furthermore,

H ≤


7.06p1/4 log p, for p ≥ 5 · 1018,

7p1/4 log p, for p ≥ 5 · 1055.

A similar bound was announced but not proven by Norton (see [32]), namely that

H ≤ 2.5p1/4 log p for p > e15 ≈ 3.27× 106 and H < 4.1p1/4 log p, in general.

The main ingredient in the proof is estimating

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

,

where p is a prime, χ is a non-principal character mod p of order k, and h is a positive

integer.

In this chapter, with help from our upper bound on Sw(p, h, χ, k) (Theorem 4.2)

and an improvement on McGown’s lower bound, we are able to prove Norton’s claim

and go a little further.

Theorem 5.2. If χ is any non-principal Dirichlet character to the prime modulus p

which is constant on (N,N +H], then

H <

{
π

2

√
e

3
+ o(1)

}
p1/4 log p.

Furthermore,

H ≤


3.64p1/4 log p, for all odd p,

1.55p1/4 log p, for p ≥ 2.5 · 109.

Remark 5.1. The constant π
2

√
e
3

= 1.49522 . . . is 1
2
√

2e
= 0.214441 . . . times the size

of McGown’s asymptotic constant.
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5.1 Lower bound for Sw(p, h, χ, k)

To prove Theorem 5.2 we will need a lower bound for Sw(p, h, χ, k). The proposition

we shall prove improves Proposition 3.3 in [26] by a factor of 4 and it also has a

smaller error term (saving a logX). It also has a less demanding condition for H.

Throughout, let A = 3
π2 .

Proposition 5.1. Let h and w be positive integers. Let χ be a non-principal Dirichlet

character to the prime modulus p which is constant on (N,N +H] and such that

4h ≤ H ≤
(
h

2

)2/3

p1/3.

Let X := H/h, then X ≥ 4 and

Sw(p, h, χ, k) ≥
(

3

π2

)
X2h2w+1g(X) = AH2h2w−1g(X),

where

g(X) = 1−
(

13

12AX
+

1

4AX2

)
.

Proof. The proof follows McGown’s treatment of the method of Burgess with some

modifications inspired by the work of Norton.

By Dirichlet’s Theorem in Diophantine approximation (see Theorem 7 on p. 101

of [12]), there exist coprime integers a and b satisfying 1 ≤ a ≤
⌊

2H
h

⌋
and

∣∣∣∣aNp − b
∣∣∣∣ ≤ 1⌊

2H
h

⌋
+ 1
≤ h

2H
. (5.1)
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Let’s define the real interval:

I(q, t) :=

(
N + pt

q
,
N +H + pt

q

]
,

for integers 0 ≤ t < q ≤ X and gcd (at+ b, q) = 1.

The reason I(q, t) is important, is that χ is constant inside the interval. Indeed,

if m ∈ I(q, t), then χ(qm− pt) = χ(N + i) for some i such that 0 < i ≤ H. Therefore

χ(m) = χ̄(q)χ(N + i). As in our proof of Theorem 4.3, we will show that the I(q, t)

are disjoint and that I(q, t) ⊆ (0, p).

First, let’s show that the I(q, t) are disjoint. If I(q1, t1) and I(q2, t2) overlap then

either N+pt1
q1
≤ Npt2

q2
< N+H+pt1

q1
or N+pt2

q2
≤ Npt1

q1
< N+H+pt2

q2
.

In the first case, multiply all by q1q2 and then subtract Nq2 + pt1q2. This yields

0 ≤ N(q1 − q2) + p(t2q1 − t1q2) < Hq2.

Analogously, for the second case, we get

−Hq1 < N(q1 − q2) + p(t2q1 + t1q2) ≤ 0.

Therefore,

∣∣∣∣N(q1 − q2)

p
+ t2q1 − t1q2

∣∣∣∣ < max {q1, q2}H
p

≤ XH

p
. (5.2)

Therefore, combining (5.1) and (5.2), we get

∣∣∣∣ ba(q1 − q2) + t2q1 − t1q2

∣∣∣∣ =

∣∣∣∣(Np +

(
b

a
− N

p

))
(q1 − q2) + t2q1 − t1q2

∣∣∣∣
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≤
∣∣∣∣Np (q1 − q2) + t2q1 − t1q2

∣∣∣∣+

∣∣∣∣( ba − N

p

)
(q1 − q2)

∣∣∣∣
<
XH

p
+
h|q1 − q2|

2aH
≤ XH

p
+

Xh

2aH
=

2aH2 + hp

2ahp
.

Since a ≤ 2H
h

and H3 ≤ h2p
4

by hypothesis, then

2H2a+ ph

2ahp
≤

4H3

h
+ ph

2ahp
≤ 2ph

2ahp
=

1

a
.

Therefore ∣∣∣∣ ba(q1 − q2) + t2q1 − t1q2

∣∣∣∣ < 1

a
,

implying that

at1 + b

q1

=
at2 + b

q2

.

However, since gcd (at1 + b, q1) = 1 and gcd (at2 + b, q2) = 1, then q1 = q2 and

therefore t1 = t2. We have now proved that the I(q, t) are disjoint.

Since χ(p) = 0, we can assume without loss of generality that N + H < p.

Now let’s prove that I(q, t) ⊆ (0, p). If m ∈ I(q, t), then m > N+pt
q
≥ 0. Also,

m ≤ N+H+pt
q

< p(t+1)
q
≤ p.

Since the I(q, t) are disjoint and they are contained in (0, p), we have

Sw(p, h, χ, k) =

p−1∑
m=0

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥
∑
q,t

∑
m∈I(q,t)

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥ h2w
∑
q,t

(
H

q
− h
)

= h2w+1
∑
q≤X

∑
0≤t<q

gcd (at+b,q)=1

(
X

q
− 1

)
.

The last inequality is true since there are at least H
q
− h subsets of h consecutive
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integers in I(q, t), and when there are h consecutive integers m,m+ 1, . . .m+ h− 1,

we have ∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

= h2w.

To finish the proof of the Proposition, we need to prove the following claim:

Claim 5.1. For a and b coprime integers and X ≥ 1 a real number we have

∑
q≤X

∑
0≤t<q

gcd (at+b,q)=1

(
X

q
− 1

)
≥ 3

π2
X2 − 13

12
X − 1

4
.

Proof of the Claim: Start by using inclusion-exclusion to get the sum equal to

∑
q≤X

∑
0≤t<q

∑
d|gcd (at+b,q)

µ(d)

(
X

q
− 1

)
.

Writing q = rd and exchanging summation gives us

∑
d≤X

∑
r≤X

d

∑
0≤t<rd

at≡−b mod d

µ(d)

(
X

rd
− 1

)
.

Since gcd (a, b) = 1, the congruence at ≡ −b mod d has a solution if and only if

gcd (d, a) = 1. Note that in such a case, there are r values of t such that 0 ≤ t < rd

and at ≡ −b mod d. Therefore the sum becomes

∑
d≤x

gcd (d,a)=1

µ(d)
∑
r≤X

d

∑
0≤t<rd

at≡−b mod d

(
X

rd
− 1

)
=

∑
d≤X

gcd (d,a)=1

µ(d)

d

∑
r≤X

d

(X − rd) .

The inside of the sum was evaluated in the proof of Lemma 4.4 and writing X
d

=
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⌊
X
d

⌋
+
{
X
d

}
we get

∑
d≤X

gcd (d,a)=1

µ(d)

d

(
X2

2d
− X

2
+
d{X

d
}
(
1− {X

d
}
)

2

)
=

X2

2

∑
d≥1

(d,a)=1

µ(d)

d2
−X

2

2

∑
d>X

(d,a)=1

µ(d)

d2
−X

2

∑
d≤X

(d,a)=1

µ(d)

d
+

1

2

∑
d≤X

(d,a)=1

µ(d)

{
X

d

}(
1−

{
X

d

})
.

(5.3)

Now, ∑
d≥1

(d,a)=1

µ(d)

d2
=

6

π2

∏
p|a

(
1− 1

p2

)−1

≥ 6

π2
. (5.4)

Using Claim 4.1 we can get

∑
d>X

(d,a)=1

µ(d)

d2
≤

∑
d>X

d squarefree

1

d2
<

1

X
. (5.5)

Tao in an expository article [43] proved the following inequality 1

∣∣∣∣∣∣∣∣
∑
d≤X

(d,a)=1

µ(d)

d

∣∣∣∣∣∣∣∣ ≤ 1. (5.6)

We include a short proof of (5.6) similar to the proof of Claim 4.3. Let

ea(n) :=


1, if rad (n) | rad (a),

0, otherwise .

1Generalizations of this inequality can be found in [16] and [41].
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Now consider the sum

Sa(X) :=
∑
n≤X

ea(n).

First note that if Sa(X) = bXc, then the only term summed in (5.6) is d = 1, showing

that the sum is 1. Therefore we may assume that Sa(X) < bXc. Now,

Sa(X) =
∑
n≤X

ea(n) =
∑
n≤X

∑
d|n

(d,a)=1

µ(d) =
∑
d≤X

(d,a)=1

µ(d)

⌊
X

d

⌋
.

Therefore∣∣∣∣∣∣∣∣X
∑
d≤X

(d,a)=1

µ(d)

d

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣Sa(X) +
∑
d≤X

(d,a)=1

µ(d)

{
X

d

}∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
d≤X

rad(d)|rad(a)

1 +
∑
d≤X

(d,a)=1

µ(d)

{
X

d

}∣∣∣∣∣∣∣∣ .
(5.7)

Note that the conditions rad(d) | rad(a) and (d, a) = 1 overlap only when d = 1.

Therefore the right hand side of (5.7) is≤ bXc+1. Now, note that since Sa(X) < bXc,

there is a prime j ≤ X such that (j, a) = 1. Since µ(j) = −1, we can conclude that

the right hand side of (5.7) is ≤ bXc. This concludes the proof of (5.6).

We also have from Claim 4.3 that

1

2

∑
d≤X

(d,a)=1

µ(d)

{
X

d

}(
1−

{
X

d

})
≤ 1

8

∑
d≤X

d squarefree

1 ≤ 1

12
x+

1

4
. (5.8)

Combining (5.4), (5.5), (5.6) and (5.8) with (5.3) proves Claim 5.1.
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5.2 Proof of the main theorem

5.2 Proof of the main theorem

Proof of Theorem 5.2. Let h and w be positive integers. Assume 4h ≤ H ≤
(
h
2

)2/3
p1/3.

Then by Proposition 5.1 and Theorem 4.2 we have (for w ≤ 9h):

AH2h2w−1g(X) ≤ Sw(p, h, χ, k) <
(2w)!

2ww!
phw + (2w − 1)p1/2h2w.

Therefore,

AH2g(X) < f(w, h), (5.9)

where f(w, h) is defined as in (4.22). We have already dealt with bounding f(w, h) in

Theorem 4.4 by choosing optimal h and w. The choices for h and w can be found in

(4.27) and (4.28), respectively. From there one can obtain (4.31), a bound for f(w, h)

which we repeat below:

f(w, h) <

(
e

4
+

5e+ 1

2 log p
+

8e+ 3

log2 p
+

8e+ 4

log3 p

)
√
p log2 p = K(p)

√
p log2 p. (5.10)

Also recall

h < 2we+ 1 <
e

2
log p+ (2e+ 1) =

(
e

2
+

2e+ 1

log p

)
log p.

Following the same approach as in Theorem 4.4, let’s assume p ≥ p0 and H ≥

C(p0) p1/4 log p. We may assume C(p0) ≥ π
√

e
12

, hence

X =
H

h
≥ C(p0)p1/4 log p(

e
2

+ 2e+1
log p

)
log p

≥
π
√

e
12(

e
2

+ 2e+1
log p

)p1/4.
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Let X(p0) be defined as

X(p0) =
π
√

e
12(

e
2

+ 2e+1
log p0

)p1/4
0 .

Note that since H ≥ π
√

e
12
p1/4 log p and h <

(
e
2

+ 2e+1
log p

)
log p, then H ≥ 4h as long

as p ≥ 1500. Now let

C(p0) =

√
K(p0)

Ag(X(p0))
,

with K(p) introduced in (5.10).

The left hand side of (5.9) can therefore be bounded from below for p ≥ p0:

AH2g(X) ≥ A (C(p0))2√p log2 p g(X(p0))

≥ K(p0)
√
p log2 p ≥ K(p)

√
p log2 p > f(w, h),

giving us a contradiction, proving that H < C(p0)p1/4 log p whenever H ≤
(
h
2

)2/3
p1/3.

It is not hard to see that C(p0) = π
√

e
12

+ o(1), thus proving the first assertion in

the Theorem.

For p ≥ 1.1 · 1010 we have that C(p0)p1/4 log p <
(
h
2

)2/3
p1/3, which implies that

for p ≥ 1.1 · 1010, H < C(p0)p1/4 log p.

Table 5.1 shows values of C(p0) for different values of p0.

Just as in the proof of Propositions 4.1, 4.4 and 4.3, we can fix the values of h

and w and improve the bounds.

For p ≥ 2.5 · 109, we have 1.55p1/4 log p <
(
h
2

)2/3
p1/3, and from the table, we have

established that H < 1.55p1/4 log p when p ≥ 1064. Therefore to finish the proof of

the theorem, we need to deal with the interval 2.5 · 109 < p < 1064.
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p0 C(p0)
1.1× 1010 1.86409

1012 1.79646
1015 1.73289
1018 1.69225
1020 1.6722
1030 1.6126
1040 1.58304
1050 1.56537
1060 1.55362
1064 1.54995

Table 5.1: Upper bound H on the number of consecutive residues with equal character
value. For p ≥ p0, H < C(p0)p1/4 log p.

As in the proof of Proposition 4.1, let

X(p) =
π
√

e
12

h
p1/4.

Let γ4(p, w, h) be defined in the following way:

γ4(p, w, h) =

√
f(w, h)

A
√
p log2 p g(X(p))

.

Then by similar arguments as in Theorem 4.4, we have H < γ4(p, h, w)p1/4 log p.

Hence, all we want is for γ4(p, h, w) to be at most 1.55 and for 1.55p1/4 log p < h2/3p1/3.

By picking w’s and h’s as in the Table 5.2, we complete the proof for p > 2.5 · 109

(noticing that with h and w fixed, γ4(p, w, h) is concave up, allowing us to just check

the endpoints of the intervals).

Let’s now prove that for all odd p we have H < 4p1/4 log p. It is obviously true

for p = 2 since 4 · 21/4 log 2 > 2. Now, for 1.9 ≤ p ≤ 3 · 106, it is true because of the
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w h p w h p w h p
6 26 [2.5 · 109, 1010] 6 28 [1010, 4 · 1010] 7 28 [4 · 1010, 1011]
7 32 [1011, 1012] 7 37 [1012, 1013] 8 41 [1013, 1014]
8 44 [1014, 1015] 9 45 [1015, 1016] 9 51 [1016, 1017]
9 59 [1017, 1018] 10 62 [1018, 1019] 11 63 [1019, 1020]
11 71 [1020, 1021] 12 72 [1021, 1023] 13 79 [1023, 1025]
15 82 [1025, 1027] 15 96 [1027, 1029] 17 97 [1029, 1031]
18 105 [1031, 1033] 18 119 [1033, 1035] 19 127 [1035, 1037]
20 135 [1037, 1039] 20 149 [1039, 1041] 22 150 [1041, 1043]
23 158 [1043, 1046] 25 166 [1046, 1049] 27 174 [1049, 1052]
29 183 [1052, 1055] 31 191 [1055, 1058] 33 200 [1058, 1062]
33 215 [1062, 1064]

Table 5.2: As an example on how to read the table: when w = 10 and h = 62, then
γ4(p, w, h) < 1.55 for all p ∈ [1018, 1019]. It is also worth noting that the inequality
1.55p1/4 log p < h2/3p1/3 is also verified for each choice of w and h.

following inequality of Brauer [5] (established with elementary methods):

H <
√

2p+ 2 < 3.64p1/4 log p.

Assume p > 1.9 · 106. We’re going to show that in this case, in fact H < 3p1/4 log p.

Note that we have a restriction on h since we want H <
(
h
2

)2/3
p1/3 to be able to use

our machinery. If h = 94, then for p ≥ 1.9 · 106 we have
(
h
2

)2/3
p1/3 > 3p1/4 log p.

Using w = 2, we have γ4(p, w, h) < 3 whenever p ∈ [3 · 106, 108]. Now picking w = 3

we get γ4(p, w, h) < 3 whenever p ∈ [108, 1011]. But, for p > 2.5 · 109, we can use the

bound of H < 1.55p1/4 log p, completing the proof.

Remark 5.2. As mentioned earlier, Norton announced (but didn’t give details) that

he could prove H < 4.1p1/4 log p for all odd p and H < 2.5p1/4 log p for p > e15 ≈

3.27 × 106. In Theorem 5.2 we prove something slightly better than his first claim,

but it is hard to judge with his second claim (as our better bound kicks in later). To
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fill the gap, I will now show that H < 2.4p1/4 log p for p > e15 (a slightly stronger

claim than Norton’s). Note that we need only fill in the gap e15 < p ≤ 2.5 × 109.

For h ≥ 67 we have 2.4p1/4 log p <
(
h
2

)2/3
p1/3 whenever p > e15. Therefore we

have H < γ4(p, w, 67)p1/4 log p for p > e15. We note that γ4(p, 2, 67) < 2.4 when

p ∈ (e15, 107.5) and γ4(p, 3, 67) < 2.4 when p ∈ [107.5, 2.5 · 109], completing the proof

of our claim.

Remark 5.3. If we’re looking for the maximum number of consecutive non-residues

for which χ remains constant, then we can do a little better than H < 3.64p1/4 log p.

In fact we can prove H < 3p1/4 log p for all odd p. Let’s prove it. It is true for p = 3

and for p = 5 since in both cases we have 3p1/4 log p > p. Now, for 7 ≤ p ≤ 2 · 106, it

is true because of the following inequality of Hudson [21]2 :

H < p1/2 + 22/3p1/3 + 21/3p1/6 + 1 < 3p1/4 log p.

We can conclude by noting that for p > 1.9 · 106, H < 3p1/4 log p.

2This inequality was done using elementary methods that build on the work of Brauer [5]. The
inequality uses a clever construction that is able to use information on g(p, k) to bound the number
of consecutive non-residues for which χ remains constant. However, it does not appear to extend to
include the case of the maximum number of consecutive residues
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Chapter 6

Burgess

Let χ be a character mod q. In Chapter 1 we defined Sχ(M,N) as follows

Sχ(M,N) =
∑

M<n≤M+N

χ(n).

We have discussed the Pólya–Vinogradov inequality in Chapters 1, 2 and 3. The

Pólya–Vinogradov inequality is very useful when N is big compared to
√
q, but not

very useful otherwise (since trivially |Sχ(M,N)| ≤ N). What we want is to have

Sχ(M,N) = o(N), that is, we want an inequality that works well even when N is not

large. The best we can do is use the Burgess inequality, which allows us to take N

as small as q
1
4

+o(1).

Theorem 6.1. Let χ be a primitive character mod q with q > 1, and let M and N

be non-negative reals with N ≥ 1. Then

|Sχ(M,N)| � N1− 1
r q

r+1

4r2
+ε
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for r = 2, 3 and for any r ≥ 1 if q is cubefree, the implied constant depending only on

ε and r.

In the thesis, our emphasis has been on making numerically explicit estimates. The

literature has few papers concerning explicit estimates for the Burgess inequality, and

all of them concern characters of prime modulus. Iwaniec and Kowalski [22] sketched

an argument to arrive at the following explicit estimate:

Theorem 6.2. Let p be a prime. Let χ be a non-principal Dirichlet character mod p.

Let r be a positive integer, and let M and N be non-negative reals with N ≥ 1. Then

|Sχ(M,N)| ≤ 30N1− 1
r p

r+1

4r2 (log p)
1
r .

Using the techniques from [22], Booker [4] gave the following improvement on the

estimate for quadratic characters:

Theorem 6.3. Let p > 1020 be a prime number with p ≡ 1 (mod 4). Let r ∈

{2, 3, 4, . . . , 15}. Let M and N be real numbers such that 0 < M,N ≤ 2
√
p. Let χ be

a non-principal quadratic character mod p. Then

|Sχ(M,N)| ≤ α(r)N1− 1
r p

r+1

4r2 (log p+ β(r))
1
2r ,

where α(r) and β(r) are given by Table 6.1.

Also following [22], McGown [25] proved the following theorem which is not as

strong as Theorem 6.3 when dealing with quadratic characters, but it works for higher

orders too.
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r α(r) β(r) r α(r) β(r)
2 1.8221 8.9077 9 1.4548 0.0085
3 1.8000 5.3948 10 1.4231 -0.4106
4 1.7263 3.6658 11 1.3958 -0.7848
5 1.6526 2.5405 12 1.3721 -1.1232
6 1.5892 1.7059 13 1.3512 -1.4323
7 1.5363 1.0405 14 1.3328 -1.7169
8 1.4921 0.4856 15 1.3164 -1.9808

Table 6.1: Explicit constants on the Burgess inequality for quadratic characters.

Theorem 6.4. Let p ≥ 2 · 104 be a prime number. Let M and N be non-negative

integers with 1 ≤ N ≤ 4p
1
2

+ 1
4r . Suppose χ is a non-principal character mod p. Then

there exists a computable constant C(r) such that

|Sχ(M,N)| < C(r)N1− 1
r p

r+1

4r2 (log p)
1
2r ,

where C(r) is given by Table 6.2.

r C(r) r C(r)
2 10.0366 9 2.1467
3 4.9539 10 2.0492
4 3.6493 11 1.9712
5 3.0356 12 1.9073
6 2.6765 13 1.8540
7 2.4400 14 1.8088
8 2.2721 15 1.7700

Table 6.2: Values for the constant C(r) in the Burgess inequality.

The restriction that N ≤ 4p
1
2

+ 1
4r is necessary to get the exponent 1

2r
in the log p

term of the inequality. In section 6.2 we improve Theorem 6.2 which works without

any restriction on N .

104



Burgess

Theorem 6.5. Let p be a prime. Let χ be a non-principal Dirichlet character mod p.

Let M and N be non-negative reals with N ≥ 1 and let r ≤ 10 be a positive integer.

Then for p ≥ p0, there exists c1(r), a constant depending on r and p0 such that

|Sχ(M,N)| ≤ c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r ,

where c1(r) is given by Table 6.3.

r p0 = 107 p0 = 1010 p0 = 1020

2 2.70301 2.59525 2.40850
3 2.00993 1.78600 1.37512
4 1.73508 1.52044 1.31151
5 1.61921 1.45435 1.30224
6 1.56241 1.42431 1.29218
7 1.52077 1.40363 1.28214
8 1.48569 1.38189 1.27196
9 1.45842 1.36260 1.26266
10 1.43281 1.34858 1.25366

Table 6.3: Values for the constant c1(r) in the Burgess inequality.

In the spirit of Theorem 6.2, where we have no restriction on r, we prove the

following corollary:

Corollary 6.1. Let p be a prime such that p ≥ 107. Let χ be a non-principal Dirichlet

character mod p. Let r be a positive integer, and let M and N be non-negative reals

with N ≥ 1. Then

|Sχ(M,N)| ≤ 2.71N1− 1
r p

r+1

4r2 (log p)
1
r .

Finally, in section 6.3, we improve Theorem 6.4 to be almost as strong as Theorem

6.3.
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r p0 = 1010 p0 = 1015 p0 = 1020

2 3.68544 3.55194 3.53837
3 2.61264 2.51481 2.49562
4 2.20106 2.12453 2.10726
5 1.98627 1.91965 1.90258
6 1.85134 1.79132 1.77669
7 1.75413 1.70003 1.68913
8 1.68092 1.63645 1.61632
9 1.62263 1.58550 1.56369
10 1.57455 1.54497 1.52159

Table 6.4: Values for the constant c2(r) in the Burgess inequality.

Theorem 6.6. Let p be a prime. Let χ be a non-principal Dirichlet character mod p.

Let M and N be non-negative reals with 1 ≤ N ≤ 2p
1
2

+ 1
4r and let r ≤ 10 be a positive

integer. Then for p ≥ p0, there exists c2(r), a constant depending on r and p0 such

that

|Sχ(M,N)| < c2(r)N1− 1
r p

r+1

4r2 (log p)
1
2r ,

where c2(r) is given by Table 6.4.

Using an idea from [29], we can get rid of the restriction on N for r ≥ 3.

Corollary 6.2. Let p ≥ 1010 be a prime number. Let M and N be non-negative

integers with N ≥ 1. Suppose χ is a non-principal character mod p and that p ≥ p0

for some positive real p0. Then for r ≥ 3, there exists a computable constant c2(r)

depending on r and p0, such that

|Sχ(M,N)| < c2(r)N1− 1
r p

r+1

4r2 (log p)
1
2r ,

where c2(r) is the same as that of Table 6.4 whenever r ≥ 3.
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6.1 Preliminary lemmas

Let A and N be positive integers. Let v(x) be the number of representations of x as

ān (mod p), where ā is the inverse of a (mod p), 1 ≤ a ≤ A and M < n ≤ M + N ,

that is,

v(x) = #
{

(a, n) ∈ N2 | 1 ≤ a ≤ A, M < n ≤M +N and n ≡ ax mod p
}
. (6.1)

The main lemma in this section is the following:

Lemma 6.1. Let p be a prime and let N < p be a positive integer. Let A ≥ 28 be an

integer satisfying A < N
12

, then

V2 =
∑

x mod p

v2(x) ≤ 2AN

(
AN

p
+ log(1.85A)

)
. (6.2)

To prove the lemma regarding V2 we will need a couple of estimates involving the

φ function; the estimates are the following two lemmas:

Lemma 6.2. For x ≥ 1 a real number we have:

∑
n≤x

nφ(n) ≤ 2

π2
x3 +

1

2
x2 log x+ x2. (6.3)

Proof. For 1 ≤ x < 2, the left hand side of (6.3) is 1, while the right hand side is at

least x2 ≥ 1. Therefore it is true for 1 ≤ x < 2. Now for 2 ≤ x < 3, the left hand side

is 3, while the right hand side is at least x2 ≥ 4. Therefore (6.3) is true for 1 ≤ x < 3.

In the rest of the proof we will assume that x ≥ 3. Let’s work with the sum:
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∑
n≤x

φ(n)n =
∑
n≤x

∑
d|n

µ(d)n2

d
=
∑
d≤x

µ(d)d
∑
dm≤x

m2

=
∑
d≤x

µ(d)d

6

⌊x
d

⌋(⌊x
d

⌋
+ 1
)(

2
⌊x
d

⌋
+ 1
)
.

Now, let θd = x
d
−
⌊
x
d

⌋
. Then we have

∑
n≤x

φ(n)n =
x3

3

∑
d≤x

µ(d)

d2
+
x2

6

∑
d≤x

(3− 6θd)µ(d)

d

+
x

6

∑
d≤x

(
6θ2

d − 6θd + 1
)
µ(d)− 1

6

∑
d≤x

θd(1− θd)(1− 2θd)µ(d)d. (6.4)

From [17, Theorem 422] it follows that for x ≥ 3

∑
d≤x

1

d
< log x+ γ +

1

x
< log x+ 1− 1

60
− 1

60x
. (6.5)

Using that 0 ≤ θd ≤ 1 we have that |3 − 6θd| ≤ 3, that |6θ2
d − 6θd + 1| ≤ 1 and

|(1− θd)(1− 2θd)(−θd)| ≤ 1
10

. Therefore, using (6.4), (6.5), that
∑
d≥1

µ(d)

d2
=

6

π2
, and

that |µ(d)| ≤ 1, we get

∑
n≤x

φ(n)n ≤ x3

3

∑
d≤x

µ(d)

d2
+
x2

2

∑
d≤x

1

d
+
x

6

∑
d≤x

1 +
1

60

∑
d≤x

d

≤ 2

π2
x3 − x3

3

∑
d>x

µ(d)

d2
+

1

2
x2 log x+

x2

2
− x2

120
− x

120
+
x2

6
+

1

60

(
x(x+ 1)

2

)
.

(6.6)

From Claim 4.1 we have ∑
d>x

µ(d)

d2
≥ −1

x
.
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Combining this with (6.6) yields the lemma.

Lemma 6.3. For x ≥ 1 a real number we have:

∑
n≤x

φ(n)

n
≤ 6

π2
x+ log x+ 1. (6.7)

Proof. For 1 ≤ x < 2, the left hand side of (6.7) is 1, while the right hand side is at

least 1. We can manually check that for all integers x satisfying 2 ≤ x ≤ 42 we have

∑
n≤x

φ(n)

n
≤ 6

π2
(x− 1) + log (x− 1) + 1,

implying that (6.7) is true for x < 42. Therefore, we may assume that x ≥ 42.

Let’s work with the sum:

∑
n≤x

φ(n)

n
=
∑
n≤x

1

n

∑
d|n

µ(d)
n

d
=
∑
d≤x

∑
n≤x

d

µ(d)

d
=
∑
d≤x

⌊x
d

⌋ µ(d)

d
.

Using that
∑
d≤x

1

d
≤ log x+ γ +

1

x
yields

∑
n≤x

φ(n)

n
≤ x

∑
d≥1

µ(d)

d2
−x

∑
d>x

µ(d)

d2
+
∑
d≤x

1

d
≤ 6

π2
x+log x+γ+

1

x
−x

∑
d>x

µ(d)

d2
. (6.8)

Moser and Macleod [30] gave a simple proof that for x ≥ 2 we have

∣∣∣∣∣∑
d>x

µ(d)

d2

∣∣∣∣∣ ≤ 1

3x
+

8

3x2
. (6.9)
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Combining (6.9) with (6.8) yields for x ≥ 42 that

∑
n≤x

φ(n)

n
≤ 6

π2
x+ log x+ γ +

1

3
+

8

3x
≤ 6

π2
x+ log x+ 1.

Lemma 6.4. For x ≥ 1 we have:

∑
d≤x

log
(x
d

)
≤ x− 1

Proof. For 1 ≤ x < 2 we have
∑
d≤x

log
(x
d

)
= log x ≤ x − 1. Therefore, we may

assume x ≥ 2. Now,

∑
d≤x

log
(x
d

)
= bxc log x−

∑
d≤x

log d ≤ bxc log x− bxc log bxc+ bxc − 1. (6.10)

To get the second inequality we used that

∑
d≤x

log d =
∑

2≤d≤x

log d ≥
∫ bxc

1

log t dt = bxc log bxc − bxc+ 1.

Now, notice that x = bxc+ {x} and log (1 + y) ≤ y, therefore we have

bxc log x = bxc log bxc+ bxc log (x/bxc) ≤ bxc log bxc+ {x}. (6.11)

Combining equations (6.10) and (6.11) yields

∑
d≤x

log
(x
d

)
≤ {x}+ bxc − 1 = x− 1.
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Now we are ready to prove Lemma 6.1.

Proof of Lemma 6.1. We’ll begin by noting that V2 is the number of quadruples

(a1, a2, n1, n2) with 1 ≤ a1, a2 ≤ A and M < n1, n2 ≤ M + N such that a1n2 ≡ a2n1

(mod p). If a1 = a2, since N < p, we have that n1 = n2 because n1 ≡ n2 (mod p)

while |n1 − n2| ≤ N < p. Therefore, the number of quadruples in this case is AN .

Fix a1 and a2 in such a way that a1 6= a2. Let k be an integer satisfying

a1n2 − a2n1 = kp, (6.12)

for some n1 and n2. We can put a bound on possible values for k. First of all, k must

be a multiple of gcd (a1, a2). Now, if we write n1 = n
′
1 + M and n2 = n

′
2 + M , we

have, using kp− (a1 − a2)M = a1n
′
2 − a2n

′
1, that

−a2N ≤ −a2n
′

1 < kp− (a1 − a2)M < a1n
′

2 ≤ a1N.

Therefore k lies in an interval of length at most (a1+a2)N
p

. Since k is a multiple of

gcd (a1, a2) and k lies in such an interval, then there are at most

(a1 + a2)N

gcd (a1, a2)p
+ 1,

choices for k.

Given a1, a2 and k we can count the number of pairs (n1, n2) which would satisfy

(6.12). The number of pairs is bounded by N gcd (a1,a2)
max{a1,a2} + 1. Therefore we get
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V2 ≤ AN + 2
∑
a1<a2

( (a1 + a2)N

gcd (a1, a2)p
+ 1
)(gcd (a1, a2)N

max{a1, a2}
+ 1
)

= AN +
2N2

p
S1 +

2N

p
S2 + 2NS3 + A2 − A, (6.13)

where

S1 =
∑
a1<a2

a1 + a2

max{a1, a2}
,

S2 =
∑
a1<a2

a1 + a2

gcd (a1, a2)
,

and

S3 =
∑
a1<a2

gcd (a1, a2)

max{a1, a2}
. (6.14)

Dealing with S1 is straightforward, in fact S1 is

∑
a2≤A

∑
a1<a2

a1 + a2

a2

=
∑
a2≤A

(
a2 − 1 +

a2(a2 − 1)

2a2

)
=

3

2

A(A− 1)

2
=

3

4
A2 − 3

4
A. (6.15)

Now, let’s estimate S2:

S2 =
∑

a1<a2≤A

a1 + a2

gcd (a1, a2)
=
∑
d≤A

∑
b2≤A

d

∑
b1<b2,(b1,b2)=1

(b1 + b2)

=
∑
d≤A

∑
2≤b2≤A

d

(
φ(b2)b2 +

φ(b2)

2
b2

)
=

3

2

∑
d≤A

∑
2≤b2≤A

d

φ(b2)b2.

Using Lemma 6.2, we get

S2 ≤
3

π2

∑
d≤A

(A
d

)3
+

3

4

∑
d≤A

(A
d

)2
log (

A

d
) +

3

2

∑
d≤A

(A
d

)2
.
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Using that log (A
d

) = logA− log d, and that
∑
d≥1

1

ds
= ζ(s), yields

S2 ≤
3ζ(3)

π2
A3 +

3ζ(2)

4
A2 logA− 3

4
A2
∑
d≤A

log d

d2
+

3

2
A2ζ(2).

Using that for A ≥ 11 we have 3ζ(2)
2
− 3

4

∑
d≤A

log d
d2

< 2 yields

S2 ≤
3ζ(3)

π2
A3 +

3ζ(2)

4
A2 log (A) + 2A2. (6.16)

Let’s estimate S3. We have

S3 =
∑

a1<a2≤A

gcd (a1, a2)

max(a1, a2)
=
∑
d≤A

∑
b2≤A

d

∑
b1<b2,(b1,b2)=1

1

b2

=
∑
d≤A

∑
2≤b2≤A

d

φ(b2)

b2

.

Using Lemma 6.3 yields

S3 ≤
∑
d≤A

(
A

d

1

ζ(2)
+ log (

A

d
)

)
=

6

π2
A
∑
d≤A

1

d
+
∑
d≤A

log (
A

d
).

From [17, Theorem 422] it follows that for A ≥ 27

∑
d≤A

1

d
< logA+ γ +

1

A
< log (1.85A).

Using this and Lemma 6.4 yields

S3 ≤
6

π2
A log (1.85A) + A− 1. (6.17)
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Using (6.15), (6.16) and (6.17) in (6.13) yields the following upper bound for V2:

2AN
(3

2
+
A− 1

2N
+

3AN

4p
− 3N

4p
+

3ζ(3)A2

π2p
+

3ζ(2)A logA

4p
+

6

π2
log (1.85A)− 1

A
+

2A

p

)
(6.18)

For A ≥ 4, we have

3ζ(3)A2

π2p
+

3ζ(2)A logA

4p
<

3

4

A2

p
. (6.19)

Since N ≥ 3A we have the following two inequalities:

AN

4p
>

3

4

A2

p
and

3N

4p
>

2A

p
. (6.20)

Combining (6.19) and (6.20) yields

3AN

4p
+

(
3ζ(3)A2

π2p
+

3ζ(2)A logA

4p

)
+

(
2A

p
− 3N

4p

)
<
AN

p
. (6.21)

Finally, using that A ≥ 28 and that N > 12A, yields

(
1− 6

π2

)
log (1.85A) ≥

(
1− 6

π2

)
log (51.8) ≥ 1.54766 >

3

2
+

1

24
≥ 3

2
+

A

2N
. (6.22)

Combining (6.21) and (6.22) in (6.18) yields (6.2).

Remark 6.1. The main term will come from the log (1.85A) term and the 1.85 can

be changed to a smaller number (the limit being eγ), forcing A to be slightly larger to

make the inequalities work. Also, the coefficient on log (1.85A) can be changed to be

as close to 6
π2 as we want as long as A is big enough. It is important to note that big

A’s will mean forcing p to be much bigger in the estimates for the Burgess inequality.
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Remark 6.2. The constraint A ≥ 28 is used to get the main term to be log (1.85A);

however, we can relax the condition on A and get a slightly worse main term. We

chose our values this way to get the constants in tables 6.3, 6.4 as low as possible for

small values of r. Relaxing the A ≥ 28 condition would make these constants worse,

but improve the constants for larger values of r. Since the small values of r seem to

be the most useful in applications, we decided to focus on minimizing these cases.

6.2 Explicit Burgess inequality

Proof of Theorem 6.5. Let M and N ≥ 1 be non-negative integers. Let r be a positive

integer. Fix a constant c1(r) ≥ 1 (which we will name later). For r = 1, the Pólya–

Vinogradov inequality implies the Burgess inequality, so assume r ≥ 2. We will prove

the Theorem by induction. Assume that for all positive integers h < N , we have

|Sχ(M,h)| ≤ c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r .

The idea is to estimate Sχ(M,N) by shifting by h (n 7→ n+ h) and getting an error

that we can deal with by induction.

Note that

Sχ(M,N) =
∑

M<n≤M+N

χ(n+ h) +
∑

M<n≤M+h

χ(n)−
∑

M+N<n≤M+N+h

χ(n).

Therefore

Sχ(M,N) =
∑

M<n≤N+M

χ(n+ h) + 2θE(h),

where |θ| ≤ 1 and E(h) = max
K
|Sχ(K,h)|.
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Let A and B be positive reals and let H = bAcbBc. We will use shifts of length

h = ab where a and b are positive integers satisfying a ≤ A and b ≤ B. After

averaging over all the pairs (a, b) we get

Sχ(N,M) =
1

H

∑
a,b

∑
M<n≤M+N

(χ(n+ ab) + 2θE(ab)) . (6.23)

Let v(x) be defined as in (6.1), then

∣∣∣∣∣∑
a,b

∑
M<n≤M+N

χ(n+ ab)

∣∣∣∣∣ ≤ ∑
x mod p

v(x)

∣∣∣∣∣∑
b≤B

χ(x+ b)

∣∣∣∣∣ . (6.24)

Let

V :=
∑

x mod p

v(x)

∣∣∣∣∣∑
b≤B

χ(x+ b)

∣∣∣∣∣ ,
then, combining (6.23) with (6.24), we get

|Sχ(N,M)| ≤ V

H
+

2

H

∑
a,b

E(ab). (6.25)

We can now focus on estimating V . Now define V1 :=
∑

x (mod p)

v(x),

V2 :=
∑

x (mod p)

v2(x) and W :=
∑

x (mod p)

∣∣∣ ∑
1≤b≤B

χ(x + b)
∣∣∣2r. Using Hölder’s Inequality

we get

V ≤ V
1− 1

r
1 V

1
2r

2 W
1
2r . (6.26)

First note that

V1 = bAcN ≤ AN.
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From Lemma 6.1, for bAc ≥ 28 and bAc < N
12

, we have

V2 ≤ 2AN

(
AN

p
+ log(1.85A)

)
. (6.27)

We can also boundW , since we dealt with it in Chapter 4, in particular, from Theorem

4.2, we have (for r ≤ 9B):

W ≤ (2r)!

2rr!
Brp+ (2r − 1)B2r√p = (2r − 1)!!Brp+ (2r − 1)B2r√p, (6.28)

where (2r − 1)!! := (2r − 1)(2r − 3) . . . (3)(1).

Let’s head back to proving the Burgess bound. We will let AB = kN for k a

real number to be chosen later. Using the inequalities of V1, V2 and W together with

(6.26) yields the following bound upper bound for V
H

:

V

H
≤ 1

bAcbBc
V

1− 1
r

1 V
1
2r

2 W
1
2r ≤

AB
bAcbBc

(AB)
1
2r

· (2WB)
1
2r

B

(
AN

p
+ log (1.85A)

) 1
2r

N1− 1
2r

≤ A

A− 1
· B

B − 1
· 1

k
1
2r

· (2WB)
1
2r

B

(
AN

p
+ log (1.85A)

) 1
2r

N1− 1
r . (6.29)

Because of (6.29) we can see that a good choice for B is the one that minimizes

WB
B2r . Using (6.28), we seek to minimize the expression (2r − 1)!! p

Br−1 + (2r − 1)Bp
1
2 .

We take the derivative with respect to B and equal it to zero. After this process we

get that a good B is

B =
(
(2r − 3)!!(r − 1)

) 1
r p

1
2r . (6.30)
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Using this value of B we get

(2WB)
1
2r

B
≤
(

2r(2r − 1)

r − 1

) 1
2r

(r − 1)
1

2r2
(
(2r − 3)!!

) 1
2r2 p

r+1

4r2 . (6.31)

Now we must try to bound AN
p

+ log (1.85A). To do this, we can use the Pólya–

Vinogradov inequality to give an upper bound for N , since for N large, the Pólya–

Vinogradov inequality would be a better bound than the Burgess inequality. Indeed,

if

N ≥ p
1
2

+ 1
4r log p, (6.32)

then, since c1(r) ≥ 1, we have

c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r ≥ √p log p.

Therefore, from the Pólya–Vinogradov inequality (see section 9.4 in [29]) we can

conclude that |Sχ(M,N)| ≤ c1(r)N1− 1
r p

r+1

4r2 log p
1
r , whenever we have (6.32).

If we have r ≥ 3, then we can use the Burgess inequality with r − 1 instead of

the Pólya–Vinogradov inequality, to get a better upper bound on N . Indeed, if we

assume that c1(r − 1) ≤ s
1

r(r−1) c1(r), where s is a real number, then if

N ≥ s p
1
4

+ 1
2r

+ 1
4r(r−1) log p,

then

c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r ≥ c1(r − 1)N1− 1

r−1p
r

4(r−1)2 (log p)
1

r−1 .

Similarly, we can put a lower bound on N , by noting that |Sχ(M,N)| ≤ N .
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Indeed,

c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r ≥ N,

whenever

N ≤ c1(r)rp
1
4

+ 1
4r log p.

Therefore, we may assume that

c1(2)2p
3
8 log p < N < p

5
8 log p, (6.33)

for r = 2, and that

c1(r)rp
1
4

+ 1
4r log p < N < s p

1
4

+ 1
2r

+ 1
4r(r−1) log p, (6.34)

for r ≥ 3.

Using that A = kN
B

, the upper bound for N in (6.33), and (6.30), we get

AN

p
=
kN2

pB
≤ kp

5
4 log2 p

pB
≤ k log2 p, (6.35)

for r = 2, and for r ≥ 3, we get

AN

p
=
kN2

pB
≤ s2kp

1
2

+ 1
r

+ 1
2r(r−1) log2 p

pB
≤ s2k

((2r − 3)!!(r − 1))
1
r p

1
2
− 1

2r
− 1

2r(r−1)

log2 p,

(6.36)

Now we consider what happens to log (1.85A).

log (1.85A) = log

(
1.85kN

B

)
≤ log (1.85k log p) +

3 log p

8
, (6.37)
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for r = 2, and for r ≥ 3, we get

log (1.85A) = log

(
1.85kN

B

)
≤ log

(
1.85s k log p

((2r − 3)!!(r − 1))
1
r

)
+

log p

4
+

log p

4r(r − 1)
.

(6.38)

Now, let’s bound the error term, the part we have labeled as E(h).

For any a, b such that ab = h < N , we have by induction hypothesis E(h) ≤

c1(r)(ab)1− 1
r p

r+1

4r2 (log p)
1
r . Therefore,

1

c1(r)p
r+1

4r2 (log p)
1
r

· 2

H

∑
a,b

E(ab) ≤ 2

bAcbBc
∑

1≤a≤A

∑
1≤b≤B

(ab)1− 1
r

≤ 2
1

AB

(
1 +

∫ A

1

t1−
1
r dt

)(
1 +

∫ B

1

t1−
1
r dt

)
AB

(A− 1)(B − 1)

≤ (AB)1− 1
r

2

(2− 1
r
)2

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+

(
1− 1

r

)2

(AB)2− 1
r

)
AB

(A− 1)(B − 1)

=
2r2

(2r − 1)2
k1− 1

rN1− 1
r

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+

(
1− 1

r

)2

(AB)2− 1
r

)
AB

(A− 1)(B − 1)
. (6.39)

Combining equations (6.29), (6.31), (6.35), (6.37) and (6.39) with (6.25) yields

(for r = 2)

|Sχ(N,M)|
N

1
2p

3
16 (log p)

1
2

≤ AB

(A− 1)(B − 1)
(12)

1
4

(
1 +

3

8k log p
+

log (1.85k log p)

k log2 p

) 1
4

+
8

9
k

1
2 c1(2)

(
1 +

1

2A
3
2

+
1

2B
3
2

+
1

4(AB)
3
2

)
AB

(A− 1)(B − 1)
. (6.40)

Similarly, for r ≥ 3, combining equations (6.29), (6.31), (6.36), (6.38) and (6.39)

with (6.25) yields
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|Sχ(N,M)|
N1− 1

r p
r+1

4r2 (log p)
1
r

≤
(

2r(2r − 1)

r − 1

) 1
2r (

(2r − 3)!!(r − 1)
) 1

2r2
AB

(A− 1)(B − 1) s2

((2r − 3)!!(r − 1))
1
r p

r−2
2(r−1)

+
1

4k log p
+

1

4r(r − 1)k log p
+

log

(
1.85s k log p

((2r−3)!!(r−1))
1
r

)
k log2 p


1
2r

+
2r2

(2r − 1)2
k1− 1

r c1(r)

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+

(
1− 1

r

)2

(AB)2− 1
r

)
AB

(A− 1)(B − 1)
. (6.41)

Now, if we let c1(r) be defined as follows

c1(2) =
AB

(A− 1)(B − 1)
(12)

1
4

(
1 + 3

8k log p
+ log (3.7k log p)

k log2 p

) 1
4

1− 8
9
k

1
2

(
1 + 1

2A
3
2

+ 1

2B
3
2

+ 1

4(AB)
3
2

) , (6.42)

for r = 2, and

c1(r) =
AB

(A− 1)(B − 1)

(
2r(2r − 1) ((2r − 3)!!(r − 1))

1
r

r − 1

) 1
2r

·

 s2

((2r−3)!!(r−1))
1
r p

1
2−

1
2r−

1
2r(r−1)

+ 1
4k log p

+ 1
4r(r−1)k log p

+
log

(
1.85s k log p

((2r−3)!!(r−1))
1
r

)
k log2 p


1
2r

1− 2r2

(2r−1)2
k1− 1

r

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+
(1− 1

r )
2

(AB)2−
1
r

) , (6.43)

for r ≥ 3. Therefore from (6.40) and (6.41), we get that

|Sχ(M,N)| ≤ c1(r)N1− 1
r p

r+1

4r2 (log p)
1
r .

All we have to do is pick k to minimize c1(r) in such a way that bAc ≥ 28, and
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6.2 Explicit Burgess inequality

that N ≥ 12A. First, we’ll start by showing that

B ≥ 15.

Since B = ((2r− 3)!!(r− 1))
1
r p

1
2r , we can just manually check for 2 ≤ r ≤ 20 that

the inequality is satisfied. To show that it works for r ≥ 21, we can show that

((2r − 3)!!(r − 1))
1
r ≥ 15, (6.44)

by noticing that it works for r = 21 and that the left hand side of (6.44) is increasing.

Indeed, the left hand side is increasing; by noticing that (2r−3)(r−1) < (2r−1)(r+1),

we get

(2r − 3)!!(r − 1) <
(2r − 1)r−1(r + 1)r−1

(r − 1)r−2
<

(2r − 1)r(r + 1)r

(r − 1)r
,

implying that

1

r
log ((2r − 3)!!(r − 1)) < log ((2r − 1)(r + 1))− log (r − 1),

which implies

r + 1

r
log ((2r − 3)!!(r − 1)) < log ((2r − 1)!!) + log (r + 1),

and hence

log
(

((2r − 3)!!(r − 1))
1
r

)
< log

(
((2r − 1)!!)(r + 1))

1
r+1

)
.
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6.2 Explicit Burgess inequality

r p ≥ 107 p ≥ 1010 p ≥ 1020

2 2.26242 1.22920 0.20612
3 1.68121 1.01700 0.22461
4 1.48333 0.98150 0.28047
5 1.38599 0.97900 0.33930
6 1.32751 0.98413 0.39415
7 1.28789 0.99064 0.44339
8 1.25889 0.99677 0.48700
9 1.23649 1.00209 0.52547
10 1.21852 1.00656 0.55942

Table 6.5: Lower bounds for the constant c1(r) in the Burgess inequality to satisfy
bAc ≥ 28.

Using that B ≥ 15, since A = kN
B

, then

A =
kN

B
<
kN

12
<
N

12
,

whenever k < 1.

Let k ≥ 3
64

. To check that bAc ≥ 28, we use (6.34) and we note that

bAc ≥ A− 1 ≥ 3N

64B
− 1 ≥ 3c1(r)rp

1
4
− 1

4r log p

64((2r − 3)!!(r − 1))
1
r

− 1.

Table 6.5 shows the lower bound c1(r) must satisfy to have bAc ≥ 28 in different

situations.

We can now find a good value of k ∈ [ 3
64
, 1) and a good value of s for each r and

p0, and plug in the values of B, k and a lower bound for A on (6.42) to find c1(2) and

on (6.43) to find c1(r) for r ≥ 3 in Table 6.3 and conclude the theorem. The values

of k and s we chose can be found on Table 6.6.
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6.2 Explicit Burgess inequality

p0 = 107 p0 = 1010 p0 = 1020

r k s k s k s
2 3/64 NA 3/64 NA 3/64 NA
3 1/16 6 3/64 10 7/64 29
4 1/16 6 3/32 7 1/8 2
5 3/32 4 7/64 3 7/64 2
6 7/64 4 1/8 2 3/32 2
7 7/64 4 3/32 3 3/32 2
8 3/32 4 5/64 3 5/64 2
9 3/32 5 5/64 3 5/64 2
10 7/64 5 3/32 3 1/16 2

Table 6.6: Values chosen for k and s to build Table 6.3.

Proof of Corollary 6.1. We begin by pointing out that Theorem 6.5 proves this for

2 ≤ r ≤ 10 and p ≥ 107. We also know that it is true for the r = 1 case by the

Pólya–Vinogradov inequality.

Following the proof of Theorem 6.5, we also have that B ≥ 15 for all r and hence,

for any k < 1, we have A < N
12

. It is also worth pointing out that we can use s = 1,

since now the constant 2.71 is fixed as the constant in our upper bound, instead of a

constant depending on r.

We need to show that you can pick a k such that bAc ≥ 28. First, let’s prove that

2.71r ≥ ((2r − 3)!!(r − 1))
1
r . Indeed, for all r ≥ 1 we have

2.71r > 2r ≥ ((2r − 3)!!(r − 1))
1
r .

Now we have

A =
kN

B
≥ k(2.71)rp

1
4
− 1

4r log p

((2r − 3)!!(r − 1))
1
r

≥ kp
1
4
− 1

4r log p > 29,
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6.3 Extending Booker’s theorem

whenever k > 29

p
1
4−

1
4r log p

.

Looking at (6.43), we can see that the only factors that don’t decrease with r

are the k1− 1
r term which appears in the denominator, and the

(
1− 1

r

)
factors in the

denominator. With this in mind, let c(r) be defined as follows for r ≥ 3:

c(r) =
15A

14(A− 1)

(
2r(2r − 1) ((2r − 3)!!(r − 1))

1
r

r − 1

) 1
2r

·

 1

((2r−3)!!(r−1))
1
r p

1
2−

1
2r−

1
2r(r−1)

+ 1
4k log p

+ 1
4r(r−1)k log p

+
log

(
1.85 k log p

((2r−3)!!(r−1))
1
r

)
k log2 p


1
2r

1− 2r2

(2r−1)2
k

(
1 + 1

A2− 1
r

+ 1

(15)2−
1
r

+ 1

(15A)2−
1
r

) . (6.45)

Letting k = 9
64

, A ≥ kp
1
4
− 1

4r and p ≥ 107 we confirm that c(r) ≤ 2.71 whenever

r ≥ 3. Since it is also true for r ≤ 2, we conclude our corollary.

6.3 Extending Booker’s theorem

The main obstacle in improving the (log p)
1
r factor in the Burgess inequality is the

bound on V2. However, if we put a bound on N , we can make the proof cleaner while

also improving the exponent in log p to 1
2r

. First we prove a lemma regarding V2 and

then we will be able to prove Theorem 6.6.

Lemma 6.5. Let p be a prime, and N be a positive integer. Let A ≥ 30 be an integer
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6.3 Extending Booker’s theorem

such that N > 7A and 2AN < p. Let v(x) be defined as in (6.1), then

V2 =
∑

x mod p

v2(x) ≤ 2AN log(1.85A).

Proof. The proof is essentially the same as that of Lemma 6.1. Recall that V2 is the

number of quadruples (a1, a2, n1, n2) with 1 ≤ a1, a2 ≤ A and M < n1, n2 ≤ M + N

such that a1n2 ≡ a2n1 (mod p). If a1 = a2, since N < p, we have that n1 = n2

because n1 ≡ n2 (mod p) while |n1 − n2| ≤ N < p. Therefore, the number of

quadruples in this case is AN . Fixing a1 6= a2 and writing

a1n2 − a2n1 = kp,

we can put a bound on possible values for k. As shown in the proof of Lemma 6.1,

there are at most (a1+a2)N
gcd (a1,a2)p

+ 1 values of k. Since 2AN < p, then we have that k is

uniquely determined.

In the proof of Lemma 6.1, we showed that given a1, a2 and k, the number of pairs

(n1, n2) is bounded by N gcd (a1,a2)
max{a1,a2} + 1.

Now, for A ≥ 30 and N > 7A we have

(
1− 6

π2

)
log (1.85A) ≥

(
1− 6

π2

)
log (55.5) = 1.57471 >

3

2
+

1

14
>

3

2
+

A

2N
. (6.46)

Using the definition of S3 as in (6.14), using the inequalities (6.17) and (6.46), for

A ≥ 30 and N > 7A, we have

V2 ≤ AN + 2
∑
a1<a2

(
gcd (a1, a2)N

max{a1, a2}
+ 1

)

126



6.3 Extending Booker’s theorem

= AN + 2NS3 + A2 − A ≤ 2AN log (1.85A).

Now we are ready to prove Theorem 6.6.

Proof of Theorem 6.6. The proof is very similar to the proof of Theorem 6.5. We pro-

ceed by induction, assuming that for all h < N we have |Sχ(M,h)| ≤ c2(r)p
r+1

4r2 (log p)
1
2r .

Most of the work in the proof of Theorem 6.6 can be replicated. So I’ll just point

out the things that change.

The first change is that by employing Lemma 6.5, (6.27) becomes

V2 ≤ 2AN log (1.85A).

This change affects (6.29), by deleting AN
p

inside the parenthesis. Now it looks as

follows:

V

H
≤ AB

(A− 1)(B − 1)

1

k
1
2r

(2WB)
1
2r

B
(log (1.85A))

1
2rN1− 1

r . (6.47)

The next change is the range for N , which we deduced by using the Pólya–

Vinogradov inequality, the trivial bound, and the case for r − 1. Instead of (6.33),

using our hypothesis and the trivial bound, we now have

c2(2)rp
3
8

√
log p < N < 2p

5
8 , (6.48)

for r = 2. Assuming c2(r − 1) ≤ s
1

r(r−1) c2(r) for a real number s, and using the
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6.3 Extending Booker’s theorem

Burgess inequality for r − 1 we have, for r ≥ 3, the following range for N

c2(r)rp
1
4

+ 1
4r

√
log p < N < min{2p

1
2

+ 1
4r , s p

1
4

+ 1
2r

+ 1
4r(r−1)

√
log p}. (6.49)

Using that A = kN
B

and (6.48), we get

log (1.85A) = log

(
1.85kN

B

)
≤ log (3.7k) +

3 log p

8
, (6.50)

for r = 2. Using (6.49), yields

log (1.85A) = log

(
1.85kN

B

)
≤ log

(
1.85s k

√
log p

((2r − 3)!!(r − 1))
1
r

)
+

log p

4
+

log p

4r(r − 1)
,

(6.51)

for r ≥ 3.

The bound for E(h) is almost the same as in (6.39), the only difference being the

exponent of log p, which is now 1
2r

instead of 1
r
. Making this change and using both

(6.31) and (6.50) with (6.47) yields (for r = 2)

|Sχ(M,N)|
N

1
2p

3
16 (log p)

1
4

≤ AB

(A− 1)(B − 1)
(12)

1
4

(
log (3.7k)

k log p
+

3

8k

) 1
4

+
AB

(A− 1)(B − 1)

8

9
k

1
2 c2(2)

(
1 +

1

2A
3
2

+
1

2B
3
2

+
1

4(AB)
3
2

)
. (6.52)

For r ≥ 3, using (6.31) and (6.51) with (6.47) yields

|Sχ(M,N)|
N1− 1

r p
r+1

4r2 (log p)
1
2r

≤ AB

(A− 1)(B − 1)

(
2r(2r − 1) ((2r − 3)!!(r − 1))

1
r

r − 1

) 1
2r
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6.3 Extending Booker’s theorem

·

 log

(
1.85s k

√
log p

((2r−3)!!(r−1))
1
r

)
k log p

+
1

4k
+

1

4r(r − 1)k


1
2r

+
AB

(A− 1)(B − 1)

2r2

(2r − 1)2
k1− 1

r c2(r)

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+

(
1− 1

r

)2

(AB)2− 1
r

)
. (6.53)

Now, if we let c2(r) be defined as follows

c2(2) =
A

A− 1

B

B − 1

(12)
1
4

(
log (3.7k)
k log p

+ 3
8k

) 1
4

1− 8
9
k

1
2

(
1 + 1

2A
3
2

+ 1

2B
3
2

+ 1

4(AB)
3
2

) , (6.54)

and, for r ≥ 3,

c2(r) =
A

A− 1

B

B − 1

2r(2r−1)((2r−3)!!(r−1))
1
r

r−1

 log

(
1.85s k

√
log p

((2r−3)!!(r−1))
1
r

)
k log p

+ 1
4k

+ 1
4r(r−1)k




1
2r

1− 2r2

(2r−1)2
k1− 1

r

(
1 +

1− 1
r

A2− 1
r

+
1− 1

r

B2− 1
r

+
(1− 1

r )
2

(AB)2−
1
r

) ,

(6.55)

for r ≥ 3. Then, from (6.52) and (6.53), we get that

|Sχ(M,N)| ≤ c2(r)N1− 1
r p

r+1

4r2 (log p)
1
2r .

All we have to do is pick k to minimize c2(r) in such a way that bAc ≥ 30, that

N > 7A and 2AN < p.

Using that B ≥ 15, it is not hard to check that N ≥ 7A. Indeed, since A = kN
B

,

we have A ≤ kN
15
< N

7
.
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6.3 Extending Booker’s theorem

To check that bAc ≥ 30 for k ≥ 3, we do the following:

bAc ≥ A− 1 ≥ 3N

64B
− 1 ≥ 3c2(r)rp

1
4
− 1

4r

√
log p

64((2r − 3)!!(r − 1))
1
r

− 1.

Table 6.7 shows the lower bound c must satisfy to have bAc ≥ 30 in different situa-

tions.

r p ≥ 1010 p ≥ 1015 p ≥ 1020

2 2.78392 1.22500 0.55514
3 1.75393 0.86474 0.43480
4 1.47708 0.81850 0.46029
5 1.35767 0.82260 0.50431
6 1.29240 0.83775 0.54839
7 1.25127 0.85450 0.58848
8 1.22279 0.87022 0.62388
9 1.20171 0.88422 0.65489
10 1.18536 0.89649 0.68202

Table 6.7: Lower bounds for the constant c2(r) in the Burgess inequality to satisfy
bAc ≥ 30.

Let’s now verify that 2AN < p. Indeed, from the fact that A = kN
B

and from

(6.48), we have

2AN =
2kN2

B
≤ 8kp

((2r − 3)!!(r − 1))
1
r

< p,

whenever k < min

{
((2r−3)!!(r−1))

1
r

8
, 1

}
.

We can now find a good value of k ∈ [ 3
64
, ((2r−3)!!(r−1))

1
r

8
) and a good value of s for

each r and p0, and plug in the values of B, k, and a lower bound bound for A on

(6.54) to find c2(2) and on (6.55) to find c2(r) for r ≥ 3 in Table 6.4 and conclude

the theorem. The values of k and s we chose can be found on Table 6.8.
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6.3 Extending Booker’s theorem

p0 = 1010 p0 = 1015 p0 = 1020

r k s k s k s
2 1/8 NA 1/8 NA 1/8 NA
3 9/64 8 9/64 8 9/64 9
4 1/8 8 1/8 8 1/8 8
5 7/64 8 7/64 8 7/64 8
6 3/32 9 3/32 9 1/8 8
7 3/32 10 3/32 9 1/8 9
8 3/32 11 7/64 9 3/32 12
9 1/16 13 7/64 10 3/32 12
10 1/16 16 7/64 12 3/32 12

Table 6.8: Values chosen for k and s to build Table 6.4.

Proof of Corollary 6.2. By Theorem 6.6, we have our desired result whenever N <

2p
1
2

+ 1
4r . Therefore, the only thing we need to prove is that for p ≥ 1010 and r ≥ 3,

N < 2p
1
2

+ 1
4r . Since the induction in the proof of Theorem 6.6 relied on the upper

bound for N , we can’t use the Burgess inequalities in Theorem 6.6 to give an upper

bound for N in this corollary. However, we can use the Burgess inequalities from

Theorem 6.5 to improve the upper bound for N . Indeed, for p ≥ 1010, we have

|Sχ(M,N)| ≤ 2.6N1− 1
2p

3
16 (log p)

1
2 .

If

N ≥ (2.6)
2r
r−1p

3
8
− 1

8r
− 3

8r(r−1)

√
log p,

then

N1− 1
r p

r+1

4r2 (log p)
1
2r ≥ 2.6N1− 1

2p
3
16

√
log p ≥ |Sχ(M,N)|.
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6.3 Extending Booker’s theorem

Therefore, we may assume that

N ≤ (2.6)
2r
r−1p

3
8
− 1

8r
− 3

8r(r−1)

√
log p. (6.56)

Now, all we need to conclude is to show that the right hand side of (6.56) is less

than 2p
1
2

+ 1
4r . Using that p ≥ 1010, we can verify this manually for r ∈ {3, 4, . . . , 21}.

Now, for r ≥ 22 we have

N ≤ (2.6)
2r
r−1p

3
8
− 1

8r
− 3

8r(r−1)

√
log p ≤ (2.6)

44
21p

3
8

√
log p < 2p

1
2 .

The last inequality is true whenever p ≥ 1010.
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Appendix A

In this Appendix we will discuss the computer code written to answer some of the

questions in the thesis. All of the code was written in Mathematica. Mathematica

is not a very useful language when it comes to loops, but it has many arithmetic

functions already written and it works great as a calculator. One function that was

very useful in Mathematica to help check for optimal constants was the function

Manipulate[] .

Tables 4.2, 4.4, 4.3 and 5.2 were all created quickly thanks to the versatility of

the function. In section A.1 we will go into more detail regarding the code created

for Chapter 3. The other chapters did not need any special computer programming.

A.1 Computer code for the least inert prime in a

real quadratic field

To determine the examples where the inequality of Theorem 3.2 fails, we use the

following code to check whether an integer is a fundamental discriminant or not:
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A.1 Computer code for the least inert prime in a real quadratic field

FundamentalDiscriminantQ[n_] :=

n != 1 && Mod[n, 4] == 1 && SquareFreeQ[n] ||

! (Mod[n, 16] != 8 != 12) && SquareFreeQ[Quotient[n, 4]] .

Once, we have this defined, we use the following code to create a list with all the

examples. It is very easy to change this code to be able to find the examples where

the inequality of Theorem 3.1 fails, as we would only need to change (j∧(0.45)) to

(j∧(0.5))/2.

listkiks = {};

Do[

If[

FundamentalDiscriminantQ[j],

i = 1;

While[KroneckerSymbol[j, Prime[i]] != -1, i++];

If[Prime[i] > (j^(0.45)), Print[j]; listkiks = Append[listkiks, j],

0],

0

]

, {j, 1, 380000}

]

listkiks .

The main code worth writing about is the one that was used to prove Theorem

3.5. In the proof of the theorem, we mention that there are 213 cases, which are all

the 41-smooth numbers. We therefore, create all the 41-smooth numbers as follows:
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A.1 Computer code for the least inert prime in a real quadratic field

smoothG[x_] :=

Do[If[i == 0, sm[1] = 1; sm[2] = 2,

Do[sm[2^i + j] = sm[j]*Prime[i + 1], {j, 1, 2^i}]], {i, 0,

PrimePi[x] - 1}];

smoothG[41] .

Note that sm[i] is a 41-smooth number for i ≤ 213. Now, we also need to keep

track of the number fdo[i] of prime factors for sm[i]. We use the following code:

fundDiscomega[x_] :=

Do[If[i == 0, fdo[1] = 0; fdo[2] = 1,

Do[fdo[2^i + j] = fdo[j] + 1, {j, 1, 2^i}]], {i, 0,

PrimePi[x] - 1}];

fundDiscomega[41] .

We will also need to code the product of consecutive primes, which we do as

follows

pprod2[v_, k_] := Product[Prime[i],{i,k,v}] .

In the main code, we need to define A2(Dv(m),m, ω, u,D1, D2), which we will call

A3[ ]. A3[ ] will have more parameters than A2; in particular c, c1, c2, a and k will be

left as variables, where c is the constant we pick for N = c
√
D (in the proof of the

Theorem we used c = 7.8), c1 and c2 are the constants from Table 3.1, a is defined as

logB/ logD and k − 1 is the number of primes which we sieve. In the proof we used

13 primes (since 41 is the 13-th prime). We leave the c, c1, c2, a and k variable to be

able to experiment with different settings, to find the optimal solution.
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A.1 Computer code for the least inert prime in a real quadratic field

A3[c_, a_, D1_, D2_, j_, k_, t_, n_, c1_, c2_] :=

c (1 - 2^(n - 1) Sqrt[D1]/EulerPhi[D1]) - 1 -

2^(n - 2) Sqrt[D1]/EulerPhi[D1] -

2 (D1/EulerPhi[D1]) (Sum[

If[GCD[i, sm[j]] == 1, G[i, c, a, D1, D2, c1, c2], 0], {i,

1, 2 c (t)^(1/2 - a)}]) .

The function A3[ ] uses the function G[ ] which is defined in Claim 3.3. The code

for G[ ] in Mathematica is:

G[n_, c_, a_, D1_, D2_, c1_, c2_] :=

If[

n > c *D2^(1/2 - a),

c/(2*n* Log[c *Sqrt[D1]/n]) + (c*

f[c *Sqrt[D1], n, c1, c2])/(n*(Log[c* Sqrt[D1]/n])^2),

If[

n <= c*D1^(1/2 - a),

c/(n *Log[c*Sqrt[D1]/n]) + (f[c*Sqrt[D1], n, c1, c2] + c2)*

c/(n*(Log[c *Sqrt[D1]/n])^2) -

c1* n/(c *(D2^(1 - 2 a))* (Log[D2^(a)])^2) -

n/(2*c*( D2^(1 - 2 a))* Log[D2^(a)]),

Max[c/(2*n* Log[c *Sqrt[D1]/n]) + (c*

f[c *Sqrt[D1], n, c1, c2])/(n*(Log[c* Sqrt[D1]/n])^2),

c/(n *Log[c*Sqrt[D1]/n]) + (f[c*Sqrt[D1], n, c1, c2] + c2)*

c/(n*(Log[c *Sqrt[D1]/n])^2) -

c1* n/(c *(D2^(1 - 2 a))* (Log[D2^(a)])^2) -

136



A.1 Computer code for the least inert prime in a real quadratic field

n/(2*c*( D2^(1 - 2 a))* Log[D2^(a)])

]

]

] .

The function G[ ] uses the function f[ ], which is defined as in (3.30) and can be

coded in Mathematica as follows:

f[N_, n_, c1_, c2_] :=

c2 + Log[4] (Log[N/n]/Log[2 N/n]) - 4 c1 (Log[N/n]/Log[2 N/n])^2 .

We now have all the ingredients to be able to list the main code for the even cases:

AbsoluteTiming[

max = 1;

k = 14;

a = .45;

c1 = 0.239818;

c2 = 0.29251;

Do[

If[j == 1, v = k, v = k - 1];

While[

A3[7.8, a, pprod2[v, k]*sm[j], pprod2[v + 1, k]*sm[j], j, k,

pprod2[v + 1, k]*sm[j], v - 13 + fdo[j], c1, c2] < 0 ,

v++

];

temp = sm[j]*pprod2[v, k];
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While[

pprod2[v + 1, k]*sm[j] < 10^(24),

If[A3[7.8, a, pprod2[v, k]*sm[j], pprod2[v + 1, k]*sm[j], j, k,

pprod2[v + 1, k]*sm[j], v - 13 + fdo[j], c1, c2] < 0 ,

Print["No puede ser"], 0

];

v++

];

If[temp > max, max = temp; Print[j, " ", v, " ", N[max]], 0]

, {j, 2, 2^(k - 1), 2}

]

] .

We conclude with the code for the odd cases:

AbsoluteTiming[

max = 1;

k = 14;

a = .45;

c1 = 0.239818;

c2 = 0.29251;

Do[

If[j == 1, v = k, v = k - 1];

While[

A3[7.8, a, pprod2[v, k]*sm[j], pprod2[v + 1, k]*sm[j], j, k,

pprod2[v + 1, k]*sm[j], fdo[j] + v - 13, c1, c2] < 0 ,
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v++

];

temp = sm[j]*pprod2[v, k];

While[

pprod2[v + 1, k]*sm[j] < 10^(24),

If[A3[7.8, a, pprod2[v, k]*sm[j], pprod2[v + 1, k]*sm[j], j, k,

pprod2[v + 1, k]*sm[j], v - 13 + fdo[j], c1, c2] < 0 ,

Print["No puede ser"], 0

];

v++

];

If[temp > max, max = temp; Print[j, " ", v, " ", N[max]], 0]

, {j, 1, 2^(k - 1), 2}

]

] .
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