Introduction

A triangular number is a number \(N \) that satisfies that \(N \) dots can be arranged in increasing order to form an equilateral triangle as in the figure below:

![The first few triangular numbers](Image 57x2308 to 288x2535)

Figure 1: The first few triangular numbers: 1, 3, 6, and 10.

These numbers are of the form:

\[
\frac{n(n+1)}{2}
\]

There happen to be triangular numbers that, when added to consecutive triangular numbers, create another triangular number, and this can be represented by an equation.

For \(k \) consecutive triangular numbers that add up to be another triangular number, where \(k, m, \) and \(n \) are positive integers, we have:

\[
\frac{n(n+1)}{2} + \ldots + \frac{(n+k-1)(n+k)}{2} = \frac{(m)(m+1)}{2}
\]

With some work the equation can be rearranged conveniently into the form \((x)^2 - k(y)^2 = f \) like this:

\[
(2m+1)^2 - k(2n+1)^2 = k^2 - 4k + 3
\]

We’ll explore for what \(k \) can we always find positive integers \(m \) and \(n \). In particular, we’ll prove:

\[
\text{Theorem}
\]

Let \(k > 4 \) be a square. Then there exist \(k \) consecutive triangular numbers that add up to a triangular number.

Example and Preliminary Work

Let’s look at an example of when \(k = 4 \).

\[
(2m + 1)^2 - 4(2n + 1)^2 = (4^1 - 16 + 3)
\]

Use difference of squares for the left hand side:

\[
(x)^2 - (ay)^2 = (x + ay)(x - ay), \text{ so:}
\]

\[
(2m + 1 - 4n - 8)(2m + 1 + 4n + 8) = 17.
\]

The integer divisors on the left hand side are 1, 17, -1, and -17, which gives:

\[
(m, n) = (4, 0), (4, -4), (-5, 0), \text{ and } (-5, -4).
\]

Let’s see if \(k = a^2 > 4 \) we have good solutions:

\[
(2m + 1)^2 - a^2(2n + 1)^2 = \frac{a^6 - 4a^2 + 3}{3}.
\]

LHS : \((2m + 1 + 2na + a^3)(2m + 1 - 2na - a^3)\)

RHS : \(\frac{(a + 1)(a - 1)(a^2 + a^2 - 3)}{3}\)

Where the left hand sides factors are \(d' \) and \(d \).

When \(k \) is even

Let’s look at the proof for the even case, when the square is even.

One solid set of divisors is 1 and \(f \) for any case so we can see that when the equations are added and solved for \(m \), we can get:

\[
m = \frac{d + d' - 2}{4} \quad \text{and} \quad \frac{d + d' + 2}{4}
\]

Similarly when one is subtracted from the other and solved for \(n \), we get:

\[
n = \frac{d' - d - 2a^3}{4a}
\]

Therefore we have the solutions:

\[
m = \frac{(a^4 - 4)(a^2)}{12}
\]

\[
n = \frac{a(a^2 - 6a - 4)}{12}
\]

When \(k \) is odd

When \(a \equiv 1 \pmod{3} \), \(f \) can be split up into integer divisors:

\[
f = \frac{(a - 1)(a + 1)}{6}(a^4 - a^2 - 3)
\]

So we have divisors:

\[
m - an + \frac{1 - a^3}{2} = \frac{a + 1}{2} = d
\]

and

\[
m + an + \frac{1 + a^3}{2} = \frac{a - 1}{6}(a^4 + a^2 - 3) = d'
\]

When they are added or subtracted from one another we can solve for \(m \) and \(n \):

\[
m = \frac{a^2(a - 1)(a^2 + 1)}{12}
\]

\[
n = \frac{(a + 2)(a - 3)(a^2 + 1)}{12}
\]

An analogous process can be used for \(a \equiv 2 \) and 0 (mod 3).

Further Studies

- How many solutions are there for a particular \(k \)?
- Can we prove that there are always positive integers \(m \) and \(n \) for any \(k \neq 4 \) consecutive triangular numbers?

References

Acknowledgements

Thank you to my professor, Enrique Treviño.
Thank you to the Richter Committee for funding this project.