Playing with Triangular Numbers

Dipika Subramaniam

Introduction

A triangular number is a number N that satisfies that N dots can be arranged in increasing order to form an equilateral triangle as in the figure below.

Figure 1: The first few triangular numbers: $1,3,6$, and 10
These numbers are of the form:

$$
\frac{n(n+1)}{2}
$$

There happen to be triangular numbers that, when added to consecutive triangular numbers, create another triangular number, and this can be represented by an equation.
For k consecutive triangular numbers that add up to be another triangular number, where k, m, and n are positive integers, we have
$\frac{n(n+1)}{2}+\ldots+\frac{(n+k-1)(n+k)}{2}=\frac{(m)(m+1)}{2}$. With some work the equation can be rearranged conveniently into the form $(x)^{2}-k(y)^{2}=f$ like this:

$$
(2 m+1)^{2}-k(2 n+k)^{2}=\frac{k^{3}-4 k+3}{3}
$$

We'll explore for what k can we always find positive integers m and n. In particular, we'll prove:

Theorem

Let $k>4$ be a square. Then there exist k consecutive triangular numbers that add up to a triangular number

Example and Preliminary Work

Let's look at an example of when $k=4$

$$
(2 m+1)^{2}-4(2 n+4)^{2}=\frac{\left(4^{3}-16+3\right)}{3}
$$

Use difference of squares for the left hand side
$(x)^{2}-(a y)^{2}=(x+a y)(x-a y)$, so:
$(2 m+1-4 n-8)(2 m+1+4 n+8)=17$
The integer divisors on the left hand side are 1,17 , -1 , and -17 , which gives:

$$
(m, n)=(4,0),(4,-4),(-5,0), \text { and }(-5,-4)
$$

Let's see if $k=a^{2}>4$ we have good solutions:

$$
(2 m+1)^{2}-a^{2}\left(2 n+a^{2}\right)^{2}=\frac{a^{6}-4 a^{2}+3}{3}
$$

$$
\begin{aligned}
& \text { LHS }:\left(2 m+1+2 n a+a^{3}\right)\left(2 m+1-2 n a-a^{3}\right) \\
& \text { RHS }: \frac{(a+1)(a-1)\left(a^{4}+a^{2}-3\right)}{3}
\end{aligned}
$$

Where the left hand sides factors are d^{\prime} and d.

Let's look at the proof for the even case, when the square is even
One solid set of divisors is 1 and f for any case so we can see see that when the equations are added and solved for m, we can get:

$$
m=\frac{d+d^{\prime}-2}{4}=\frac{1+\frac{(a-1)(a+1)\left(a^{4}+a^{2}-3\right)}{3}-2}{4}
$$

Similarly when one is subtracted from the other and solved for n, we get:

$$
n=\frac{d^{\prime}-d-2 a^{3}}{4 a}=\frac{\frac{(a-1)(a+1)\left(a^{4}+a^{2}-3\right)}{3}-1-2 a^{3}}{}
$$

Therefore we have the solutions:

$$
\begin{aligned}
m & =\frac{\left(a^{4}-4\right)\left(a^{2}\right)}{12} \\
n & =\frac{a\left(a^{4}-6 a-4\right)}{12}
\end{aligned}
$$

Figure 2: The sum of 9 consecutive triangular numbers, starting from the 5 th triangular number, makes the 29th triangular number.

When $a \equiv 1(\bmod 3), f$ can be split up into integer divisors:

$$
f=\left(\frac{a-1}{6}\right)\left(\frac{a+1}{2}\right)\left(a^{4}+a^{2}-3\right)
$$

So we have divisors:

$$
m-a n+\frac{1-a^{3}}{2}=\frac{a+1}{2}=d
$$

and

$$
m+a n+\frac{1+a^{3}}{2}=\frac{a-1}{6}\left(a^{4}+a^{2}-3\right)=d^{\prime}
$$

When they are added together or subtracted from one another we can solve for m and n :

$$
\begin{aligned}
m & =\frac{a^{2}(a-1)\left(a^{2}+1\right)}{12} \\
n & =\frac{(a+2)(a-3)\left(a^{2}+1\right)}{12}
\end{aligned}
$$

An analogous process can be used for $a \equiv 2$ and 0 $(\bmod 3)$.

Further Studies

How many solutions are there for a particular k ? - Can we prove that there are always positive integers m and n for any $k \neq 4$ consecutive triangular numbers?

References

(1) Triangular Numbers. Nzmaths. Accessed June 06, 2018.
https://nzmaths.co.nz/resource/triangularnumbers.
(2 Matthew McMullen, Playing with blocks, Math Horiz. 25 (2018), no. 4, 14-15.

Acknowledgements

[^0]
[^0]: Thank you to my professor, Enrique Treviño.
 Thank you to the Richter Committee for funding this project

