El mínimo no-residuo cuadrático y otros problemas relacionados

Enrique Treviño

Semana de Matemáticas y Ciencia, UASD 4 de octubre, 2022

Considera la secuencia

- Todo entero positivo n cae en una de tres categorías: $n \equiv 0, 1 ó 2 \pmod{3}$.
- Si $n \equiv 0 \pmod{3}$, entonces $n^2 \equiv 0^2 = 0 \pmod{3}$.
- Si $n \equiv 1 \pmod{3}$, entonces $n^2 \equiv 1^2 = 1 \pmod{3}$.
- Si $n \equiv 2 \pmod{3}$, entonces $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Considera la secuencia

- Todo entero positivo n cae en una de tres categorías: n ≡ 0, 1 ó 2 (mod 3).
- Si $n \equiv 0 \pmod{3}$, entonces $n^2 \equiv 0^2 = 0 \pmod{3}$.
- Si $n \equiv 1 \pmod{3}$, entonces $n^2 \equiv 1^2 = 1 \pmod{3}$.
- Si $n \equiv 2 \pmod{3}$, entonces $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Considera la secuencia

- Todo entero positivo n cae en una de tres categorías:
 n ≡ 0, 1 ó 2 (mod 3).
- Si $n \equiv 0 \pmod{3}$, entonces $n^2 \equiv 0^2 = 0 \pmod{3}$.
- Si $n \equiv 1 \pmod{3}$, entonces $n^2 \equiv 1^2 = 1 \pmod{3}$.
- Si $n \equiv 2 \pmod{3}$, entonces $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Considera la secuencia

- Todo entero positivo n cae en una de tres categorías:
 n ≡ 0, 1 ó 2 (mod 3).
- Si $n \equiv 0 \pmod{3}$, entonces $n^2 \equiv 0^2 = 0 \pmod{3}$.
- Si $n \equiv 1 \pmod{3}$, entonces $n^2 \equiv 1^2 = 1 \pmod{3}$.
- Si $n \equiv 2 \pmod{3}$, entonces $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Considera la secuencia

- Todo entero positivo n cae en una de tres categorías:
 n ≡ 0, 1 ó 2 (mod 3).
- Si $n \equiv 0 \pmod{3}$, entonces $n^2 \equiv 0^2 = 0 \pmod{3}$.
- Si $n \equiv 1 \pmod{3}$, entonces $n^2 \equiv 1^2 = 1 \pmod{3}$.
- Si $n \equiv 2 \pmod{3}$, entonces $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Residuos y no-residuos cuadráticos

Sea n un entero positivo. Para $q \in \{1, 2, \ldots, n-1\}$, llamamos a q residuo cuadrático $\bmod n$ si existe un entero x tal que $x^2 \equiv q \pmod n$. Si no existe tal x, decimos que q es un no-residuo cuadrático módulo n.

- Para n = 3, el residuo cuadrático es 1 y el no-residuo es 2.
- Para n = 5, los residuos cuadráticos son {1,4} y los no-residuos son {2,3}.
- Para n = 7, los residuos cuadráticos son {1,2,4} y los no-residuos son {3,5,6}.
- Para n = p, un primo impar, hay $\frac{p-1}{2}$ residuos cuadráticos y $\frac{p-1}{2}$ no-residuos cuadráticos.

- Para que el mínimo sea > 2 necesitamos que 2 sea residuo cuadrático, por lo tanto $p \equiv \pm 1 \pmod 8$, por lo que p = 7 es el primer ejemplo.
- Para que el mínimo sea > 3 necesitamos que 2 y 3 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$ y $p \equiv \pm 1 \pmod 12$, que implica $p \equiv \pm 1 \pmod 24$, dándonos a p = 23 como el primer ejemplo.
- Para que el mínimo sea > 5 necesitamos que 2,3 y 5 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$, $p \equiv \pm 1 \pmod 12$ y $p \equiv \pm 1 \pmod 5$, lo cual implica $p \equiv \pm 1, \pm 49 \pmod 120$, dándonos a p = 71 como el primer ejemplo.

- Para que el mínimo sea > 2 necesitamos que 2 sea residuo cuadrático, por lo tanto $p \equiv \pm 1 \pmod 8$, por lo que p = 7 es el primer ejemplo.
- Para que el mínimo sea > 3 necesitamos que 2 y 3 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$ y $p \equiv \pm 1 \pmod 12$, que implica $p \equiv \pm 1 \pmod 24$, dándonos a p = 23 como el primer ejemplo.
- Para que el mínimo sea > 5 necesitamos que 2,3 y 5 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$, $p \equiv \pm 1 \pmod 12$ y $p \equiv \pm 1 \pmod 5$, lo cual implica $p \equiv \pm 1, \pm 49 \pmod 120$, dándonos a p = 71 como el primer ejemplo.

- Para que el mínimo sea > 2 necesitamos que 2 sea residuo cuadrático, por lo tanto $p \equiv \pm 1 \pmod 8$, por lo que p = 7 es el primer ejemplo.
- Para que el mínimo sea > 3 necesitamos que 2 y 3 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$ y $p \equiv \pm 1 \pmod 12$, que implica $p \equiv \pm 1 \pmod 24$, dándonos a p = 23 como el primer ejemplo.
- Para que el mínimo sea > 5 necesitamos que 2,3 y 5 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$, $p \equiv \pm 1 \pmod 12$ y $p \equiv \pm 1 \pmod 5$, lo cual implica $p \equiv \pm 1, \pm 49 \pmod 120$, dándonos a p = 71 como el primer ejemplo.

- Para que el mínimo sea > 2 necesitamos que 2 sea residuo cuadrático, por lo tanto $p \equiv \pm 1 \pmod 8$, por lo que p = 7 es el primer ejemplo.
- Para que el mínimo sea > 3 necesitamos que 2 y 3 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$ y $p \equiv \pm 1 \pmod 12$, que implica $p \equiv \pm 1 \pmod 24$, dándonos a p = 23 como el primer ejemplo.
- Para que el mínimo sea > 5 necesitamos que 2,3 y 5 sean residuos cuadráticos, por lo tanto $p \equiv \pm 1 \pmod 8$, $p \equiv \pm 1 \pmod 5$, lo cual implica $p \equiv \pm 1, \pm 49 \pmod {120}$, dándonos a p = 71 como el primer ejemplo.

р	Mínimo no-residuo cuadrático		
7	3		
23	5		
71	7		
311	11		
479	13		
1559	17		
5711	19		
10559	23		
18191	29		
31391	31		
422231	37		
701399	41		
366791	43		
3818929	47		

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- Si $k = \log \pi(x)/\log 2$ esperaríamos sólo un primo satisfaciendo $g(p) = p_k$, así que si k es un poco más grande, no se esperaría tener un primo con tan grande mínimo no-residuo cuadrático.
- Entonces queremos $k \approx C \log x$, y como $p_k \sim k \log k$ entonces tenemos $g(x) \approx C \log x \log \log x$.

Sea g(p) el mínimo no-residuo cuadrático mod p. La heurística propone la conjetura

$$g(p) = O(\log p \log \log p).$$

- Usando GRH, Bach demostró $g(p) \le 2 \log^2 p$.
- Lamzouri, Li y Soundararajan en el 2015 probaron usando GRH que $g(p) \le \log^2 p$.
- Incondicionalmente, Burgess demostró $g(p) \ll_{\varepsilon} p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- En la dirección de una cota inferior, Graham and Ringrose demostraron que hay infinitos p satisfaciendo g(p) ≫ log p log log log p, es decir

$$g(p) = \Omega(\log p \log \log \log p).$$

Sea g(p) el mínimo no-residuo cuadrático $\bmod p$. La heurística propone la conjetura

$$g(p) = O(\log p \log \log p).$$

- Usando GRH, Bach demostró $g(p) \le 2 \log^2 p$.
- Lamzouri, Li y Soundararajan en el 2015 probaron usando GRH que $g(p) \le \log^2 p$.
- Incondicionalmente, Burgess demostró $g(p) \ll_{\varepsilon} p^{\frac{1}{4\sqrt{\theta}} + \varepsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- En la dirección de una cota inferior, Graham and Ringrose demostraron que hay infinitos p satisfaciendo $g(p) \gg \log p \log \log \log p$, es decir

$$g(p) = \Omega(\log p \log \log \log p).$$

Sea g(p) el mínimo no-residuo cuadrático mod p. La heurística propone la conjetura

$$g(p) = O(\log p \log \log p).$$

- Usando GRH, Bach demostró $g(p) \le 2 \log^2 p$.
- Lamzouri, Li y Soundararajan en el 2015 probaron usando GRH que $g(p) \le \log^2 p$.
- Incondicionalmente, Burgess demostró $g(p) \ll_{\varepsilon} p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- En la dirección de una cota inferior, Graham and Ringrose demostraron que hay infinitos p satisfaciendo g(p) ≫ log p log log log p, es decir

$$g(p) = \Omega(\log p \log \log \log p).$$

Sea g(p) el mínimo no-residuo cuadrático mod p. La heurística propone la conjetura

$$g(p) = O(\log p \log \log p).$$

- Usando GRH, Bach demostró $g(p) \le 2 \log^2 p$.
- Lamzouri, Li y Soundararajan en el 2015 probaron usando GRH que $g(p) \le \log^2 p$.
- Incondicionalmente, Burgess demostró $g(p) \ll_{\varepsilon} p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- En la dirección de una cota inferior, Graham and Ringrose demostraron que hay infinitos p satisfaciendo g(p) ≫ log p log log log p, es decir

$$g(p) = \Omega(\log p \log \log \log p).$$

Cotas explicitas para el mínimo no-residuo cuadrático

Norton demostró

$$g(p) \le \left\{ egin{array}{ll} 3.9 p^{1/4} \log p & ext{si } p \equiv 1 \pmod 4, \ 4.7 p^{1/4} \log p & ext{si } p \equiv 3 \pmod 4. \end{array}
ight.$$

Teorema (ET, 2015)

Sea p > 3 un primo. Sea g(p) el mínimo no-residuo cuadrático mod p. Entonces

$$g(p) \le \left\{ egin{array}{ll} 0.9 p^{1/4} \log p & \textit{si } p \equiv 1 \pmod{4}, \\ 1.1 p^{1/4} \log p & \textit{si } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Cotas explicitas para el mínimo no-residuo cuadrático

Norton demostró

$$g(p) \leq \left\{ \begin{array}{ll} 3.9p^{1/4}\log p & \text{si } p \equiv 1 \pmod 4, \\ 4.7p^{1/4}\log p & \text{si } p \equiv 3 \pmod 4. \end{array} \right.$$

Teorema (ET, 2015)

Sea p > 3 un primo. Sea g(p) el mínimo no-residuo cuadrático mod p. Entonces

$$g(p) \le \left\{ egin{array}{ll} 0.9 p^{1/4} \log p & \textit{si } p \equiv 1 \pmod{4}, \\ 1.1 p^{1/4} \log p & \textit{si } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Teorema (Burgess 1962)

Sea g(p) mínimo no-residuo cuadrático mod p. Sea $\varepsilon > 0$. Existe p_0 tal que para todos los primos $p \ge p_0$ tenemos $g(p) < p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.

Teorema (ET 2015)

Sea g(p) el mínimo no-residuo cuadrático mod p. Sea p un primo mayor 10^{4732} , entonces $g(p) < p^{1/6}$.

Teorema (Francis 2021)

Sea g(p) el mínimo no-residuo cuadrático mod p. Sea p un primo mayor 10^{3872} , entonces $g(p) < p^{1/6}$, si $p > 10^{82}$, $g(p) < p^{1/4}$.

Residuos cuadráticos consecutivos y no-residuos cuadráticos consecutivos

Sea H(p) el máximo conjunto de residuos cuadráticos consecutivos o no-residuos cuadráticos consecutivos módulo p. Por ejemplo, con p=7 tenemos que H(7)=2.

р	H(p)
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4
41	5

Burgess demostró en 1963 que $H(p) \le Cp^{1/4} \log p$.

N = 4 = 10= 44	Λ ≈ -		Daatuiaaiaaaa
Matemático	Año	C	Restricciones
Norton*	1973	2.5	$p > e^{15}$
Norton*	1973	4.1	No tiene restricciones
Preobrazhenskaya	2009	1.85+o(1)	No es explícita
McGown	2012	7.06	$p > 5 \cdot 10^{18}$
McGown	2012	7	$p > 5 \cdot 10^{55}$
ET	2012	1.495+ o(1)	No es explícita
ET	2012	1.55	$p > 10^{13}$
ET	2017	3.38	No tiene restricciones

^{*}Norton no incluyó demostraciones de estos resultados.

Campos cuadráticos y primos inertes

- Sea d un entero libre de cuadrados.
- $\mathbb{Q}(\sqrt{d})$ es un campo cuadrático.
- Un primo $p \in \mathbb{Z}$ es inerte si permanece primo en el campo cuadrático.
- Por ejemplo, consideremos $\mathbb{Q}(\sqrt{-1}) = \mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}.$ En este campo, los primos inertes son los primos $p \equiv 3 \pmod{4}$.
- Nótese que 5 no es primo en $\mathbb{Q}(i)$ por que (1+2i)(1-2i)=5. Similarmente cualquier primo $p \equiv 1 \pmod{4}$ no es primo en $\mathbb{Q}(i)$ ya que p puede ser escrito como $a^2 + b^2$ para algunos $a, b \in \mathbb{Z}$ y por lo tanto p = (a+bi)(a-bi).

Caracterización de los primos inertes en campos cuadráticos

- La discriminante D del campo cuadrático $\mathbb{Q}(\sqrt{d})$ es d si $d \equiv 1 \pmod{4}$ y 4d de lo contrario.
- El primo p es inerte en $\mathbb{Q}(\sqrt{d})$ sí y sólo sí el símbolo de Kronecker (D/p)=-1.
- El símbolo de Kronecker es una generalización del símbolo de Legendre:

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si } a \text{ es un residuo cuadrático} \mod p, \\ -1 & \text{si } a \text{ es un no-residuo cuadrático} \mod p, \\ 0 & \text{si } p \mid a. \end{cases}$$

Caracterización de los primos inertes en campos cuadráticos

- La discriminante D del campo cuadrático $\mathbb{Q}(\sqrt{d})$ es d si $d \equiv 1 \pmod{4}$ y 4d de lo contrario.
- El primo p es inerte en $\mathbb{Q}(\sqrt{d})$ sí y sólo sí el símbolo de Kronecker (D/p) = -1.
- El símbolo de Kronecker es una generalización del símbolo de Legendre:

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1 & \text{si } a \text{ es un residuo cuadrático} \mod p, \\ \\ -1 & \text{si } a \text{ es un no-residuo cuadrático} \mod p, \\ \\ 0 & \text{si } p \mid a. \end{array} \right.$$

Caracterización de los primos inertes en campos cuadráticos

- La discriminante D del campo cuadrático $\mathbb{Q}(\sqrt{d})$ es d si $d \equiv 1 \pmod{4}$ y 4d de lo contrario.
- El primo p es inerte en $\mathbb{Q}(\sqrt{d})$ sí y sólo sí el símbolo de Kronecker (D/p) = -1.
- El símbolo de Kronecker es una generalización del símbolo de Legendre:

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1 & \text{si } a \text{ es un residuo cuadrático} \mod p, \\ -1 & \text{si } a \text{ es un no-residuo cuadrático} \mod p, \\ 0 & \text{si } p \mid a. \end{array} \right.$$

El mínimo primo inerte en un campo real cuadrático

Teorema (Granville, Mollin and Williams, 2000)

Para cualquier discriminante fundamental D > 3705, existe al menos un primo $p \le \sqrt{D}/2$ tal que el símbolo de Kronecker (D/p) = -1.

Teorema (ET, 2012)

Para cualquier discriminante fundamental D > 1596, existe al menos un primo $p \le D^{0.45}$ tal que el símbolo de Kronecker (D/p) = -1.

El mínimo primo inerte en un campo real cuadrático

Teorema (Granville, Mollin and Williams, 2000)

Para cualquier discriminante fundamental D > 3705, existe al menos un primo $p \le \sqrt{D}/2$ tal que el símbolo de Kronecker (D/p) = -1.

Teorema (ET, 2012)

Para cualquier discriminante fundamental D > 1596, existe al menos un primo $p \le D^{0.45}$ tal que el símbolo de Kronecker (D/p) = -1.

Ideas de la demostración

- Usar una computadora para checar los casos "pequeños".
 Granville, Mollin y Williams usaron el Manitoba Scalable Sieving Unit.
- Usar técnicas analíticas para demostrar el "caso infinito", es decir, cuando D es muy grande. La herramienta usada por Granville et al. es la desigualdad de Pólya–Vinogradov. En mi caso use una versión "lisa" de la desigualdad.
- Usar Pólya

 –Vinogradov junto con computación para llenar el hueco.

Ideas de la demostración

- Usar una computadora para checar los casos "pequeños".
 Granville, Mollin y Williams usaron el Manitoba Scalable Sieving Unit.
- Usar técnicas analíticas para demostrar el "caso infinito", es decir, cuando D es muy grande. La herramienta usada por Granville et al. es la desigualdad de Pólya–Vinogradov. En mi caso use una versión "lisa" de la desigualdad.
- Usar Pólya

 –Vinogradov junto con computación para llenar el hueco.

Ideas de la demostración

- Usar una computadora para checar los casos "pequeños".
 Granville, Mollin y Williams usaron el Manitoba Scalable Sieving Unit.
- Usar técnicas analíticas para demostrar el "caso infinito", es decir, cuando D es muy grande. La herramienta usada por Granville et al. es la desigualdad de Pólya–Vinogradov. En mi caso use una versión "lisa" de la desigualdad.
- Usar Pólya–Vinogradov junto con computación para llenar el hueco.

Manitoba Scalable Sieving Unit

Símbolo de Legendre

$$Sea\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 0 & , & \text{if } a \equiv 0 \bmod p, \\ \\ 1 & , & \text{if } a \text{ es un residuo cuadrático } \bmod p \\ \\ -1 & , & \text{if } a \text{ es un no-residuo cuadrático } \bmod p. \end{array} \right.$$

 $\left(\frac{a}{p}\right)$ tiene las siguientes propiedades:

- $\left(\frac{a}{p}\right) = \left(\frac{a+p}{p}\right)$ para todo a.
- $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ para toda a, b. $\left(\frac{a}{p}\right) \neq 0$ si y solo si $\gcd(a, p) = 1$.

Sea *n* un entero positivo.

- $\chi(a+n)=\chi(a)$ para toda $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ para toda $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ sí y sólo sí gcd(a, n) > 1.

Sea *n* un entero positivo.

- $\chi(a+n)=\chi(a)$ para toda $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ para toda $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ sí y sólo sí gcd(a, n) > 1.

Sea *n* un entero positivo.

- $\chi(a+n)=\chi(a)$ para toda $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ para toda $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ sí y sólo sí gcd(a, n) > 1.

Sea *n* un entero positivo.

- $\chi(a+n)=\chi(a)$ para toda $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ para toda $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ sí y sólo sí gcd(a, n) > 1.

Una idea simple pero poderosa

Sea g(p)=m el mínimo no-residuo cuadrático máulo p. Supongamos que $\chi(a)=\left(\frac{a}{p}\right)$. Entonces $\chi(n)=1$ para n=1,2,3,...,m-1 y $\chi(m)=-1$. Por lo tanto

$$\sum_{i=1}^m \chi(i) = m-2 < m,$$

у

$$\sum_{i=1}^{k} \chi(i) = k \text{ for all } k < m.$$

Entonces una cota de $\sum_{i=1}^{n} \chi(i)$ nos acota g(p).

Pólya-Vinogradov

Sea χ un carácter de Dirichlet módulo q > 1. Definamos

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

La desigualdad Pólya–Vinogradov (1918) dice que existe una constante universal c tal que para cualquier carácter de Dirichlet $S(\chi) \leq c\sqrt{q}\log q$.

Asumiendo GRH, Montgomery y Vaughan demostraron que $S(\chi) \ll \sqrt{q} \log \log q$.

Paley demostró en 1932 que hay infinitos caracteres cuadráticos tales que $S(\chi) \gg \sqrt{q} \log \log q$.

Pólya-Vinogradov explícito

Teorema (Hildebrand, 1988)

Para χ un carácter primitivo módulo q > 1, tenemos

$$|S(\chi)| \leq \left\{ \begin{array}{ll} \left(\frac{2}{3\pi^2} + o(1)\right) \sqrt{q} \log q &, \quad \chi \ par, \\ \left(\frac{1}{3\pi} + o(1)\right) \sqrt{q} \log q &, \quad \chi \ impar. \end{array} \right.$$

Teorema (Frolenkov-Soundararajan, 2013)

Para χ un carácter primitivo módulo $q \ge 1200$, tenemos

$$|S(\chi)| \leq \left\{ egin{array}{ll} rac{2}{\pi^2} \sqrt{q} \log q + \sqrt{q} &, & \chi \ par, \ \ rac{1}{2\pi} \sqrt{q} \log q + \sqrt{q} &, & \chi \ impar. \end{array}
ight.$$

Burgess

Teorema (Burgess, 1962)

Sea χ un carácter primitivo mod q, donde q > 1, r es un entero positivo y $\varepsilon > 0$ es un número real. Entonces

$$|\mathcal{S}_{\chi}(M,N)| = \left|\sum_{M < n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\varepsilon}$$

para r = 1, 2, 3 y para cualquier $r \ge 1$ si q es libre de cubos. La constante implícita depende sólo en ε y r.

Burgess Explícito

Teorema (Iwaniec-Kowalski-Friedlander)

Sea χ un carácter de Dirichlet no principal mod p (un primo). Sean M y N enteros no-negativos tales que N \geq 1 y sea $r \geq$ 2, entonces

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Teorema (ET, 2015)

Sea p un primo. Sea χ un carácter de Dirichlet no principal mod p. Sean M y N enteros no-negativos tales que $N \ge 1$ y sea r un entero positivo. Entonces, para $p \ge 10^7$, tenemos

$$|S_{\chi}(M,N)| \le 2.74N^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}}.$$

Burgess Explícito

Teorema (Iwaniec-Kowalski-Friedlander)

Sea χ un carácter de Dirichlet no principal mod p (un primo). Sean M y N enteros no-negativos tales que N \geq 1 y sea $r \geq$ 2, entonces

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Teorema (ET, 2015)

Sea p un primo. Sea χ un carácter de Dirichlet no principal mod p. Sean M y N enteros no-negativos tales que N \geq 1 y sea r un entero positivo. Entonces, para $p \geq 10^7$, tenemos

$$|S_{\chi}(M,N)| \leq 2.74N^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}}.$$

- Booker (2006) calculó el número de clase de un campo con una discriminante de 32 dígitos usando Burgess explícito.
- McGown (2012) demostró que no hay campos cúbicos cíclicos que son norm-Euclidean si la discriminante del campo es > 10¹⁴⁰
- Levin, Pomerance y Soundararajan (2010) demostraron una conjetura de Brizolis que dice que para todo primo p > 3 existe una raíz primitiva g y un entero $x \in [1, p-1]$ tal que $\log_g x = x$, es decir, $g^x \equiv x \pmod{p}$.
- Cohen, Oliveira e Silva, y Trudgian demostraron que la mínima raíz primitiva es menor a $\sqrt{p}-2$ para $p>3.38\times 10^{71}$.

- Booker (2006) calculó el número de clase de un campo con una discriminante de 32 dígitos usando Burgess explícito.
- McGown (2012) demostró que no hay campos cúbicos cíclicos que son norm-Euclidean si la discriminante del campo es > 10¹⁴⁰.
- Levin, Pomerance y Soundararajan (2010) demostraron una conjetura de Brizolis que dice que para todo primo p > 3 existe una raíz primitiva g y un entero $x \in [1, p-1]$ tal que $\log_g x = x$, es decir, $g^x \equiv x \pmod{p}$.
- Cohen, Oliveira e Silva, y Trudgian demostraron que la mínima raíz primitiva es menor a $\sqrt{p} 2$ para $p > 3.38 \times 10^{71}$.

- Booker (2006) calculó el número de clase de un campo con una discriminante de 32 dígitos usando Burgess explícito.
- McGown (2012) demostró que no hay campos cúbicos cíclicos que son norm-Euclidean si la discriminante del campo es > 10¹⁴⁰.
- Levin, Pomerance y Soundararajan (2010) demostraron una conjetura de Brizolis que dice que para todo primo p > 3 existe una raíz primitiva g y un entero $x \in [1, p-1]$ tal que $\log_g x = x$, es decir, $g^x \equiv x \pmod{p}$.
- Cohen, Oliveira e Silva, y Trudgian demostraron que la mínima raíz primitiva es menor a $\sqrt{p}-2$ para $p>3.38\times 10^{71}$.

- Booker (2006) calculó el número de clase de un campo con una discriminante de 32 dígitos usando Burgess explícito.
- McGown (2012) demostró que no hay campos cúbicos cíclicos que son norm-Euclidean si la discriminante del campo es > 10¹⁴⁰.
- Levin, Pomerance y Soundararajan (2010) demostraron una conjetura de Brizolis que dice que para todo primo p > 3 existe una raíz primitiva g y un entero $x \in [1, p-1]$ tal que $\log_g x = x$, es decir, $g^x \equiv x \pmod{p}$.
- Cohen, Oliveira e Silva, y Trudgian demostraron que la mínima raíz primitiva es menor a $\sqrt{p}-2$ para $p>3.38\times 10^{71}$.

Mi aplicación favorita

Teorema (ET, 2015)

Sea g(p) el mínimo no-residuo cuadrático módulo p. Sea p un primo mayor a 10^{4732} , entonces $g(p) < p^{1/6}$.

Teorema (Francis 2021)

Sea g(p) el mínimo no-residuo cuadrático mod p. Sea p un primo mayor 10^{3872} , entonces $g(p) < p^{1/6}$, si $p > 10^{82}$, $g(p) < p^{1/4}$.

La desigualdad clave en la desigualdad de Burgess

Teorema (Burgess, Booker, ET)

Sean h y w enteros positivos. Sea χ un carácter de Dirichlet primitivo mod p, entonces

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} < (2w-1)!! p \, h^w + (2w-1)\sqrt{p} \, h^{2w}.$$

Bosquejo de la demostración

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \bmod p} \chi(q(x)),$$

donde

$$q(x) = \frac{(x+l_1)(x+l_2)\dots(x+l_w)}{(x+l_{w+1})(x+l_{w+2})\dots(x+l_{2w})}.$$

• Si q(x) no es una k-ésima potencia (donde k es el orden de χ), entonces

$$\left|\sum_{x \bmod p} \chi(q(x))\right| \leq (r-1)\sqrt{p},$$

donde r es el número de raíces distintas de q(x). (Esto es una consecuencia de un teorema importante de Weil).

Bosquejo de la demostración

 $\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \bmod p} \chi(q(x)),$

donde

0

$$q(x) = \frac{(x+l_1)(x+l_2)\dots(x+l_w)}{(x+l_{w+1})(x+l_{w+2})\dots(x+l_{2w})}.$$

 Si q(x) no es una k-ésima potencia (donde k es el orden de χ), entonces

$$\left|\sum_{x \bmod p} \chi(q(x))\right| \leq (r-1)\sqrt{p},$$

donde r es el número de raíces distintas de q(x). (Esto es una consecuencia de un teorema importante de Weil).

Applicaciones

Teorema (ET, 2015)

Sea p>3 un primo y k un entero positivo que divide a p-1. Sea g(p,k) el mínimo no-residuo de las k potencias mod p. Entonces

$$g(p,k) \le \begin{cases} 1.1p^{1/4} \log p & \text{si } p \equiv 3 \mod 4 \text{ y } k = 2, \\ 0.9p^{1/4} \log p & \text{de lo contrario.} \end{cases}$$

Teorema (ET, 2012, 2017)

Si χ es un carácter de Dirichlet no principal módulo p, para p primo, tal que χ es constante en (N, N + H], entonces

Applicaciones

Teorema (ET, 2015)

Sea p>3 un primo y k un entero positivo que divide a p-1. Sea g(p,k) el mínimo no-residuo de las k potencias mod p. Entonces

$$g(p,k) \le \begin{cases} 1.1p^{1/4} \log p & \text{si } p \equiv 3 \mod 4 \text{ y } k = 2, \\ 0.9p^{1/4} \log p & \text{de lo contrario.} \end{cases}$$

Teorema (ET, 2012, 2017)

Si χ es un carácter de Dirichlet no principal módulo p, para p primo, tal que χ es constante en (N, N+H], entonces

$$H \leq \left\{ \begin{array}{ll} 3.38 p^{1/4} \log p, & \textit{para todo primo impar } p, \\ \\ 1.55 p^{1/4} \log p, & \textit{para } p \geq 10^{13}. \end{array} \right.$$

Pólya-Vinogradov Lisa

Sean M, N números reales tales que $0 < N \le q$, entonces definamos $S^*(\chi)$ de la siguiente manera:

$$S^*(\chi) = \max_{M,N} \left| \sum_{M \le n \le M + 2N} \chi(n) \left(1 - \left| \frac{n - M}{N} - 1 \right| \right) \right|.$$

Teorema (Levin, Pomerance, Soundararajan, 2009)

Sea χ un carácter primitivo módulo q>1, y sean M, N reales tales que $0< N \leq q$, entonces

$$S^*(\chi) \leq \sqrt{q} - \frac{N}{\sqrt{q}}.$$

Cota inferior para la Pólya-Vinogradov lisa

Teorema (Adamczewski, ET, 2015)

Sea χ un carácter primitivo módulo q>1, y sean M, N reales tales que $0< N \leq q$, entonces

$$S^*(\chi) \ge \frac{2}{\pi^2} \sqrt{q}.$$

Por lo tanto, el tamaño de $S^*(\chi)$ es del orden de \sqrt{q} .

PV lisa con información aritmética

Teorema (ET, 2012)

Sea χ un carácter de Dirichlet primitivo módulo q > 1, y sean M, N números reales tales que $0 < N \le q$. Entonces

$$\left|\sum_{M\leq n\leq M+2N}\chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right|\leq \frac{\phi(q)}{q}\sqrt{q}+2^{\omega(q)-1}\frac{N}{\sqrt{q}}.$$

Usando la PV lisa en el problema del mínimo primo inerte

Sea $\chi(p)=\left(\frac{D}{p}\right)$ (el símbolo de Kronecker). Ya que D es una discriminante fundamental, χ es un carácter primitivo módulo D. Consideremos

$$S_{\chi}(N) = \sum_{n \leq 2N} \chi(n) \left(1 - \left|\frac{n}{N} - 1\right|\right).$$

Entonces por el smoothed PV, tenemos

$$|S_{\chi}(N)| \leq rac{\phi(D)}{D} \sqrt{D} + 2^{\omega(D)-1} rac{N}{\sqrt{D}}.$$

Ahora,

$$S_\chi(N) = \sum_{\substack{n \leq 2N \\ (n,D) = 1}} \left(1 - \left\lfloor \frac{n}{N} - 1 \right\rfloor \right) - 2 \sum_{\substack{B$$

Por lo tanto,

$$\frac{\phi(D)}{D} \sqrt{D} + 2^{\omega(D)-1} \frac{N}{\sqrt{D}} \ge \frac{\phi(D)}{D} N - 2^{\omega(D)-2} - 2 \sum_{\substack{n \le \frac{2N}{B} \\ (n,D)=1}} \sum_{B$$

• Ahora, tomando $N = c\sqrt{D}$ para alguna constante c tenemos

$$0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2N}{B} \\ (n,D) = 1}} \sum_{B$$

Ahora,

$$S_\chi(N) = \sum_{\substack{n \leq 2N \\ (n,D) = 1}} \left(1 - \left \lfloor \frac{n}{N} - 1 \right \rfloor \right) - 2 \sum_{\substack{B$$

Por lo tanto,

$$\frac{\phi(D)}{D}\sqrt{D} + 2^{\omega(D)-1}\frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D}N - 2^{\omega(D)-2} - 2\sum_{\substack{n \leq \frac{2N}{N} \\ (n,D)=1}} \sum_{B$$

• Ahora, tomando $N = c\sqrt{D}$ para alguna constante c tenemos

$$0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2N}{n} \\ (n,D) = 1}} \sum_{B$$

Ahora,

$$S_\chi(N) = \sum_{\substack{n \leq 2N \\ (n,D) = 1}} \left(1 - \left \lfloor \frac{n}{N} - 1 \right \rfloor \right) - 2 \sum_{\substack{B$$

Por lo tanto,

$$\frac{\phi(D)}{D}\sqrt{D}+2^{\omega(D)-1}\frac{N}{\sqrt{D}}\geq \frac{\phi(D)}{D}N-2^{\omega(D)-2}-2\sum_{\substack{n\leq \frac{2N}{B}\\ (n,D)=1}}\sum_{B< p\leq \frac{2N}{n}}\left(1-\left|\frac{np}{N}-1\right|\right).$$

• Ahora, tomando $N = c\sqrt{D}$ para alguna constante c tenemos

$$0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right)\frac{D}{\phi(D)\sqrt{D}}-\frac{2}{\sqrt{D}}\frac{D}{\phi(D)}\sum_{\substack{n\leq\frac{2N}{B}\\(n,D)=1}}\sum_{B<\rho\leq\frac{2N}{n}}\left(1-\left|\frac{np}{N}-1\right|\right)$$

Eventualmente tenemos,

$$0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2c}{\log B} e^{\gamma} \left(1 + \frac{1}{\log^2\left(\frac{2N}{B}\right)}\right) \log\left(\frac{2N}{B}\right) \prod_{\substack{p > \frac{2N}{B} \\ a|D}} \frac{p}{p-1}.$$

Para $D \ge 10^{24}$ esto es una contradicción.

Caso Híbrido

Como en el caso anterior, tenemos

$$0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right)\frac{D}{\phi(D)\sqrt{D}}-\frac{2}{\sqrt{D}}\frac{D}{\phi(D)}\sum_{\substack{n \leq \frac{2N}{B}\\(n,D)=1}}\sum_{B$$

En este caso, como ya no nos tenemos que preocupar por el caso "infinito", podemos usar una versión más fea de la desigualdad para

$$\sum_{B$$

La idea es considerar 2^{13} casos, uno para cada posibilidad de gcd(D, M) cuando $M = \prod_{p < 41} p$.

- Consideramos los valores pares y nones por separado. Para los nones, después de checar todos los casos, el teorema queda demostrado para todo D mayor o igual a 21853026051351495 = 2.2... × 10¹⁶.
- Para los pares, queda demostrado para todo D mayor o igual a $1707159924755154870 = 1.71... \times 10^{18}$.
- Como no lo obtuvimos para 1.04×10^{18} , entonces tenemos que trabajar un poco más duro. Encontramos los 12 casos especiales y lidiamos con ellos uno por uno.
- QED.

- Consideramos los valores pares y nones por separado. Para los nones, después de checar todos los casos, el teorema queda demostrado para todo D mayor o igual a 21853026051351495 = 2.2... × 10¹⁶.
- Para los pares, queda demostrado para todo D mayor o igual a $1707159924755154870 = 1.71... \times 10^{18}$.
- Como no lo obtuvimos para 1.04×10^{18} , entonces tenemos que trabajar un poco más duro. Encontramos los 12 casos especiales y lidiamos con ellos uno por uno.
- QED.

- Consideramos los valores pares y nones por separado. Para los nones, después de checar todos los casos, el teorema queda demostrado para todo D mayor o igual a 21853026051351495 = 2.2... × 10¹⁶.
- Para los pares, queda demostrado para todo D mayor o igual a $1707159924755154870 = 1.71... \times 10^{18}$.
- Como no lo obtuvimos para 1.04×10^{18} , entonces tenemos que trabajar un poco más duro. Encontramos los 12 casos especiales y lidiamos con ellos uno por uno.
- · QED.

- Consideramos los valores pares y nones por separado. Para los nones, después de checar todos los casos, el teorema queda demostrado para todo D mayor o igual a 21853026051351495 = 2.2... × 10¹⁶.
- Para los pares, queda demostrado para todo D mayor o igual a $1707159924755154870 = 1.71... \times 10^{18}$.
- Como no lo obtuvimos para 1.04×10^{18} , entonces tenemos que trabajar un poco más duro. Encontramos los 12 casos especiales y lidiamos con ellos uno por uno.
- QED.

¡Muchas Gracias!