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The USA Junior Mathematical Olympiad (USAJMO) is the final round in the American Math-
ematics Competitions series for high school students in grade 10 or below, organized each year by
the Mathematical Association of America. The competition follows the style of the International
Mathematical Olympiad (IMO): it consists of three problems each on two consecutive days, with
an allowed time of four and a half hours both days.

The 14th annual USAJMO was given on Tuesday, March 21, 2023 and Wednesday, March 22,
2023, and was taken by 273 students. The names of the winners and those receiving honorable
mention, as well as more information on the American Mathematics Competitions program, can be
found on the site https://www.maa.org/math-competitions. Below we present the problems and so-
lutions of the competition; a similar article for the USA Mathematical Olympiad (USAMO), offered
to high school students in grade 12 or below, can be found in a concurrent issue of Mathematics
Magazine.

The problems of the USAJMO are chosen—from a large collection of proposals submitted for
this purpose—by the USAMO/USAJMO Editorial Board that works under the leadership of co-
editors-in-chief Oleksandr Rudenko and Enrique Treviño. This year’s problems were created by
Titu Andreescu, Holden Mui, Carl Schildkraut, David Torres, and Anton Trygub.

The solutions presented here are those of the present authors, relying in part on the submissions
of the problem authors. Each problem was worth 7 points; the nine-tuple

(n; a7, a6, a5, a4, a3, a2, a1, a0)

states the number of students who submitted a paper for the relevant problem, followed by the
numbers who scored 7, 6, . . . , 0 points, respectively.
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Problem 1 (261; 182, 8, 10, 5, 2, 4, 12, 38); proposed by Titu Andreescu. Find all triples of positive
integers (x, y, z) that satisfy the equation

2(x+ y + z + 2xyz)2 = (2xy + 2yz + 2zx+ 1)2 + 2023. (1)

Solution. Expanding expressions, we get

2(x+ y + z + 2xyz)2 = 2x2 + 2y2 + 2z2 + 8x2y2z2 + 4xy + 4xz + 4yz + 8x2yz + 8xy2z + 8xyz2,

and

(2xy + 2yz + 2zx+ 1)2 = 4x2y2 + 4y2z2 + 4x2z2 + 1 + 8x2yz + 8xy2z + 8xyz2 + 4xy + 4xz + 4yz.

After cancellations and the rearrangements of terms, we thus see that our original equation (1) is
equivalent to

8x2y2z2 − 4x2y2 − 4y2z2 − 4x2z2 + 2x2 + 2y2 + 2z2 − 1 = 2023. (2)

Our goal is to factor the left side, and for that it is helpful to observe that if 2x2 = 1, or 2y2 = 1,
or 2z2 = 1, then that side vanishes. This allows us to rewrite (2) as

(2x2 − 1)(2y2 − 1)(2z2 − 1) = 2023.

Therefore, 2x2 − 1, 2y2 − 1, and 2z2 − 1 must be positive divisors of 2023 that multiply to 2023.
Now 2023 = 7 · 172, so 2023 has six positive divisors: 1, 7, 17, 119, 289, and 2023. Adding 1 and
dividing by 2 results in a square number only in the first three cases, which then means that 2x2−1,
2y2 − 1, and 2z2 − 1 must equal 7, 17, and 17 in some order, yielding three choices for (x, y, z):
(2, 3, 3), (3, 2, 3), and (3, 3, 2).

Problem 2 (245; 146, 0, 2, 0, 1, 5, 18, 73); proposed by Holden Mui. In an acute triangle ABC, let
M be the midpoint of BC. Let P be the foot of the perpendicular from C to AM . Suppose that
the circumcircle of triangle ABP intersects line BC at two distinct points B and Q. Let N be the
midpoint of AQ. Prove that NB = NC.

First solution. We will prove that N lies on the perpendicular bisector of BC, from which the claim
follows. Let T be the intersection point of AQ with the perpendicular bisector of BC; we need to
prove that T = N .

Applying the Law of Sines to triangle ATM , we have

AT = AM · sin(∠AMT )

sin(∠ATM)
. (3)

Now
∠AMT = 90◦ − ∠BMA = 90◦ − ∠CMP = ∠PCM,

so

sin(∠AMT ) = sin(∠PCM) =
PM

MC
=

PM

BM
.

Furthermore, ∠ATM and ∠MTQ are supplementary angles, so

sin(∠ATM) = sin(∠MTQ) =
MQ

TQ
.
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Figure 1: Illustration for the first solution to Problem 2.

Therefore, we may rewrite (3) as

AT =
AM · PM · TQ

BM ·MQ
.

Since ∠QAM = ∠QAP = ∠QBP = ∠MBP and ∠AMQ = ∠PMB, triangles AMQ and BMP
are similar, and thus AM/MQ = BM/PM . This gives AT = TQ, as claimed.

Second solution. We let ω1 be the circumcircle of triangle ABP , and ω2 be the circumcircle of
triangle APC. The foot of the perpendicular from A to BC, denoted by D, is then on ω2, since
∠ADC = ∠APC.
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M
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Q

N

Figure 2: Illustration for the second solution to Problem 2.

From the Power of a Point Theorem applied to circles ω1 and ω2, respectively, we get

MA ·MP = MB ·MQ
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and
MA ·MP = MC ·MD;

since MB = MC, we get MD = MQ. But then MN is a midline of triangle ADQ, and thus MN
and AD are parallel. Therefore, N lies on the perpendicular bisector of BC, which implies our
claim.

Problem 3 (233; 37, 10, 20, 19, 60, 31, 19, 37); proposed by Holden Mui. Consider an n-by-n board
of unit squares for some odd positive integer n. We say that a collection C of identical dominoes
is a maximal grid-aligned configuration on the board if C consists of (n2 − 1)/2 dominoes where
each domino covers exactly two neighboring squares and the dominoes do not overlap: C then
covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the
board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned configurations
obtainable from C by repeatedly sliding dominoes. Find the maximum value of k(C) as a function
of n.

Solution. The answer is (n+ 1)2/4.
We first prove that k(C) is at most (n + 1)2/4. We label the squares of the board by ordered

pairs (i, j) in the usual manner, and then color each square by one of three colors: if both of its
coordinates are odd, we color it red; if both of its coordinates are even, we color it blue; and if its
coordinates have different parities, we color it white. Note that we then have exactly (n+1)2/4 red
squares, (n− 1)2/4 blue squares (together, (n2 +1)/2 dark squares), and (n2 − 1)/2 white squares.

In a maximal grid-aligned configuration, each domino covers a dark square and a white square.
We will refer to each domino by the color of the dark square it covers. We will call the square that
is not covered by dominoes empty. Note that, by parity, the empty square is colored dark.

Let Γ be the directed graph whose vertices are the dark squares, and whose directed edges are
drawn from a square v to the square that the domino covering v points to (the square that, if it
were empty, the domino could slide to in one move), if it exists. An example is shown in Figure 3.
Note that Γ uniquely determines the configuration of dominoes.

Let G be the undirected graph corresponding to Γ. Observe that the connected components of
G are formed by monochromatic dominoes (i.e., either all red or all blue). Suppose that C is a
cycle in G. Connecting the center points of the unit squares in C forms a polygon P . Since each
side of P has even length, the region surrounded by P can be divided into 2×2 squares, so the area
of the region is divisible by 4, and is thus even. By Pick’s Theorem, the area equals B/2 + I − 1,
where B is the number of unit squares in C, and I is the number of unit squares in the interior of
P . Since B is twice the number of dominoes in C, and C contains an even number of dominoes,
we find that I is odd, which can only be true if C encloses the empty square (i.e., contains it in its
interior).

Let T be the connected component of G that contains the empty square u; according to what
we just proved, T cannot contain a cycle, so it must be a tree. Let Γ(T ) be the subgraph of Γ on
T . Since T is a tree, it is valid to say whether the edges in Γ(T ) point towards u or away from it.
We claim that, in fact, each directed edge in Γ(T ) points towards u. Suppose indirectly that there
are some directed edges that point away from u, and choose one whose tail vertex v1 is closest to
u; let v2 be the head of this directed edge. Let v3 be the vertex in T that v1 is adjacent to along
the path from v1 to u. By assumption, the edge connecting v1 and v3 has v1 as its tail. But v2 and
v3 are different vertices, so v1 is the tail of more than one directed edge, which is a contradiction.
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This means that u is the universal sink of Γ(T ). We thus find that there is exactly one way to
make any vertex of Γ(T ) become the empty square: reverse the direction of each edge on the path
that connects that vertex to u, that is, slide each corresponding domino on that path towards u.
Therefore, k(C) equals the number of vertices in T . Since T is monochromatic, it can have at
most as many vertices as there are blue squares or red squares, which implies that k(C) is at most
(n+1)2/4. We can achieve k(C) = (n+1)2/4 by positioning the dominoes covering red squares in
a snake-like fashion. An example construction for n = 7 is shown in Figure 4.

Problem 4 (254; 26, 10, 11, 22, 28, 95, 43, 19); proposed by David Torres. Two players, B and R,
play the following game on an infinite grid of unit squares, all initially colored white. The players
take turns starting with B. On B’s turn, B selects one white unit square and colors it blue. On R’s
turn, R selects two white unit squares and colors them red. The players alternate until B decides
to end the game. At this point, B gets a score, given by the number of unit squares in the largest
(in terms of area) simple polygon containing only blue unit squares. What is the largest score B
can guarantee? (A simple polygon is a polygon (not necessarily convex) that does not intersect
itself and has no holes.)

Solution. We claim that the maximum score that B may achieve is 4.
It is not hard to see that B can always guarantee a score of 4. Indeed, during the first four

rounds, she can always pick a white square neighboring—and by that we mean, having a common
side with—one of the squares she already picked: at least two of the four squares neighboring her
first choice are still white, at least two of the six squares neighboring her first two squares are still
white, and at least one of the seven or eight squares neighboring her first three squares are still
white.

To show that R can prevent B from obtaining a score larger than 4, we divide the infinite grid
into 2 × 2 squares that we call states. (Figure 5 illustrates this with thicker lines marking state
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borders.)
Note that each square now has exactly two neighboring squares that are in other states. The

strategy for R is then to choose the two squares that border B’s latest choice across state lines
(unless one or both of these squares are already colored, in which case R can instead pick any other
square or squares).

With this strategy, R is able to prevent B from ever coloring two neighboring squares blue that
belong to different states. But this means that B can never form a simple polygon containing only
blue unit squares that contains squares from more than one state. This proves our claim.

Problem 5 (234; 103, 7, 6, 2, 11, 6, 55, 44); proposed by Carl Schildkraut. Positive integers a and N
are fixed, and N positive integers are written on a blackboard. Alice and Bob play the following
game. On Alice’s turn, she must replace some integer n on the board with n+a, and on Bob’s turn,
he must replace some even integer n on the board with n/2. Alice goes first and they alternate
turns. If on his turn Bob has no valid moves, the game ends. After analyzing the N integers on the
board, Bob realizes that, regardless of what moves Alice makes, he will be able to force the game
to end eventually. Show that, in fact, for this value of a and these N integers on the board, the
game is guaranteed to end regardless of Alice’s or Bob’s moves.

Solution. If there is only a single integer on the board, then all moves are determined uniquely,
and thus there is nothing to prove. Below we suppose that there are at least two numbers on the
board.

Before we make a precise claim regarding the game, let us recall that every positive integer m
can be written uniquely as m = 2k · c where c is odd; k is called the 2-adic valuation of m and is
denoted by ν2(m). Here, for our fixed value of a, we say that a positive integer m is 2-perfect if
ν2(m) = ν2(a), 2-abundant if ν2(m) > ν2(a), and 2-deficient if ν2(m) < ν2(a). We can now make
the following claims: If the board has at least one number that is 2-perfect or 2-abundant, then
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Figure 5: An illustration for Problem 4.

Alice can prolong the game indefinitely, but if all numbers on the board are 2-deficient, then the
game will terminate (in a finite number of steps) no matter how Alice and Bob play.

For our proof, it is helpful to make the following observations about any positive integer m:

• if m is 2-perfect, then ν2(m+ a) > ν2(m), and thus m+ a is 2-abundant;

• if m is 2-abundant, then ν2(m+ a) = ν2(a), and thus m+ a is 2-perfect;

• if m is 2-deficient, then ν2(m+ a) = ν2(m), and thus m+ a remains 2-deficient.

To verify the first observation, let m = 2k · c1 and a = 2k · c2 for some nonnegative integer k and
odd integers c1 and c2. Then

m+ a = 2k · (c1 + c2),

where c1+c2 is even and hence ν2(m+a) > k. The other two observations can be deduced similarly.
Now we turn to the proof of our claims. Assume first that the board contains at least one

number that is 2-perfect or 2-abundant; we claim that Alice can then move in such a way that
after her move the board contains at least one 2-abundant number. Indeed, if there is already a
2-abundant number on the board, she should leave it unchanged and add a to any other number,
and if there is a 2-perfect one, she can add a to it to make it 2-abundant. (Note that Alice may
have several such options, in which case she can choose any of them.) After Alice’s move, Bob
will have some moves available (for example, on the 2-abundant number on the board). He will
reduce the 2-adic valuation of one of the numbers on the board by exactly 1, but that will transfer
the scenario back to a case in which the board contains at least one number that is 2-perfect or
2-abundant. Alice can thus use this strategy to prolong the game indefinitely.

Suppose now that all numbers on the board are 2-deficient. We let S =
∑

ν2(n), where the
summation is taken over all integers on the board. By our observations above, every move that
Alice makes will leave S unchanged, while obviously each move that Bob makes reduces S by 1.
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But then, after a finite number of rounds, there will be no more even numbers on the board, and
the game terminates.

Problem 6 (182; 6, 0, 1, 0, 4, 0, 20, 151); proposed by Anton Trygub. Isosceles triangle ABC, with
AB = AC, is inscribed in circle ω. Let D be an arbitrary point on BC such that BD ̸= DC.
Ray AD intersects ω again at E (other than A). Point F (other than E) is chosen on ω such that
∠DFE = 90◦. Line FE intersects rays AB and AC at points X and Y , respectively. Prove that
∠XDE = ∠EDY .

Solution. We introduce three additional points: we let G be the intersection of FD with ω (other
than F ), I be the intersection of AG and CE, and J be the intersection of AG and BE. Then,
since AB = AC, we have

∠JEA = ∠BEA = ∠AEC = ∠AEI,

and since we also have ∠EAG = ∠EFG = 90◦, this means that EA is both an angle bisector and
an altitude of triangle EIJ . But D lies on EA, so we have ∠JDA = ∠ADI and thus

∠JDE = ∠EDI. (4)

Figure 6: Illustration for the solution to Problem 6.

To complete our proof, we will employ Pascal’s Theorem, which states that for a (not necessarily
convex) cyclic hexagon A1A2A3A4A5A6, the intersections of the opposite sides are collinear; that
is, if L = A1A2∩A4A5, M = A2A3∩A5A6, and N = A3A4∩A6A1, then L, M , and N are collinear.

Now applying Pascal’s theorem to the cyclic hexagon ABCEFG, since X = AB ∩ EF , D =
BC ∩ FG, and I = CE ∩ GA, we have that X, D, and I are collinear. Likewise, in the cyclic
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hexagon ACBEFG, since Y = AC ∩EF , D = CB ∩ FG, and J = BE ∩GA, we have that Y , D,
and J are collinear. Therefore, we have ∠XDJ = ∠Y DI, and this together with (4) implies that
∠XDE = ∠Y DE, as claimed.
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Summary. We present the problems and solutions to the 14th Annual United States of America Junior Mathematical Olympiad.
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