
D
RA
FT

Report on the 52nd Annual USA
Mathematical Olympiad
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The USA Mathematical Olympiad (USAMO) is the final round in the American Mathematics
Competitions series for high school students, organized each year by the Mathematical Association
of America. The competition follows the style of the International Mathematical Olympiad (IMO):
it consists of three problems each on two consecutive days, with an allowed time of four and a half
hours both days.

The 52nd annual USAMO was given on Tuesday, March 21, 2023 and Wednesday, March 22,
2023. Of the 238 students taking the exam, 16, 28, and 43 earned Gold, Silver, and Bronze Prizes,
respectively; an additional 66 students received Honorable Mention. The names of the prize winners,
as well as more information on the American Mathematics Competitions program, can be found on
the site https://www.maa.org/math-competitions. Below we present the problems and solutions of
the competition; a similar article for the USA Junior Mathematical Olympiad (USAJMO), offered
to students in grade 10 or below, can be found in a concurrent issue of the College Mathematics
Journal.

The problems of the USAMO are chosen—from a large collection of proposals submitted for this
purpose—by the USAMO/USAJMO Editorial Board, under the leadership of co-editors-in-chief
Oleksandr Rudenko and Enrique Treviño. This year’s problems were created by Ankan Bhat-
tacharya, Zack Chroman, Holden Mui, and Carl Schildkraut.

The solutions presented here are those of the present authors, relying in part on the submissions
of the problem authors. Each problem was worth 7 points; the nine-tuple

(n; a7, a6, a5, a4, a3, a2, a1, a0)

states the number of students who submitted a paper for the relevant problem, followed by the
numbers who scored 7, 6, . . . , 0 points, respectively.

Problem 1 (226; 171, 2, 2, 1, 2, 0, 10, 38); proposed by Holden Mui. In an acute triangle ABC, let
M be the midpoint of BC. Let P be the foot of the perpendicular from C to AM . Suppose that
the circumcircle of triangle ABP intersects line BC at two distinct points B and Q. Let N be the
midpoint of AQ. Prove that NB = NC.

First solution. We will prove that N lies on the perpendicular bisector of BC, from which the claim
follows. Let T be the intersection point of AQ with the perpendicular bisector of BC; we need to
prove that T = N .
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Figure 1: Illustration for the first solution to Problem 1.

Applying the Law of Sines to triangle ATM , we have

AT = AM · sin(∠AMT )

sin(∠ATM)
. (1)

Now
∠AMT = 90◦ − ∠BMA = 90◦ − ∠CMP = ∠PCM,

so

sin(∠AMT ) = sin(∠PCM) =
PM

MC
=

PM

BM
.

Furthermore, ∠ATM and ∠MTQ are supplementary angles, so

sin(∠ATM) = sin(∠MTQ) =
MQ

TQ
.

Therefore, we may rewrite (1) as

AT =
AM · PM · TQ

BM ·MQ
.

Since ∠QAM = ∠QAP = ∠QBP = ∠MBP and ∠AMQ = ∠PMB, triangles AMQ and BMP
are similar, and thus AM/MQ = BM/PM . This gives AT = TQ, as claimed.

Second solution. We let ω1 be the circumcircle of triangle ABP , and ω2 be the circumcircle of
triangle APC. The foot of the perpendicular from A to BC, denoted by D, is then on ω2, since
∠ADC = ∠APC.

From the Power of a Point Theorem applied to circles ω1 and ω2, respectively, we get

MA ·MP = MB ·MQ

and
MA ·MP = MC ·MD;
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Figure 2: Illustration for the second solution to Problem 1.

since MB = MC, we get MD = MQ. But then MN is a midline of triangle ADQ, and thus MN
and AD are parallel. Therefore, N lies on the perpendicular bisector of BC, which implies our
claim.

Problem 2 (211; 55, 2, 7, 0, 8, 24, 64, 51); proposed by Carl Schildkraut. Let R+ be the set of positive
real numbers. Find all functions f : R+ → R+ such that, for all x, y ∈ R+, we have

f(xy + f(x)) = xf(y) + 2. (2)

Solution. We claim that the only such function is f(x) = x+1. It is easy to verify that this function
works; we need to prove that there are no others.

We start by showing that f is injective. Suppose that x1 and x2 are positive real numbers.
Applying the given equation to x = x1 and y = x2 results in

f(x1x2 + f(x1)) = x1f(x2) + 2,

and for x = x2 and y = x1 we get

f(x1x2 + f(x2)) = x2f(x1) + 2.

From this it follows that f(x1) = f(x2) implies x1 = x2.
Suppose now that u and v are arbitrary positive real numbers. Letting x = f(u) and y = v, (2)

becomes
f(vf(u) + f(f(u))) = f(u)f(v) + 2,

and letting x = f(v) and y = u gives

f(uf(v) + f(f(v))) = f(v)f(u) + 2.

Since the two right sides are equal and f is injective, we find that

uf(v) + f(f(v)) = vf(u) + f(f(u)) (3)
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holds for all u, v ∈ R+.
Next, we let u = x, v = 1, and f(1) = a; (3) then yields

ax+ f(a) = f(x) + f(f(x)).

Similarly, with u = x, v = 2, and f(2) = b, we get

bx+ f(b) = 2f(x) + f(f(x)).

Adding the last equation to the negative of the one before it, we arrive at

f(x) = (b− a)x+ f(b)− f(a). (4)

Therefore,
f(a) = (b− a)a+ f(b)− f(a)

and
f(b) = (b− a)b+ f(b)− f(a);

subtraction yields
f(b)− f(a) = (b− a)2.

Let us write c = b − a; with that, (4) becomes f(x) = cx + c2. To determine c, we plug in
x = y = 1 in (2):

f(1 + f(1)) = f(1) + 2,

which gives
c(1 + c+ c2) + c2 = c+ c2 + 2,

and thus
c3 + c2 − 2 = (c− 1)(c2 + 2c+ 2) = 0.

The only real number solution of this equation is c = 1. Therefore, f(x) = x + 1, completing our
proof.

Problem 3 (186; 24, 17, 10, 9, 9, 12, 40, 65); proposed by Holden Mui. Consider an n-by-n board of
unit squares for some odd positive integer n. We say that a collection C of identical dominoes
is a maximal grid-aligned configuration on the board if C consists of (n2 − 1)/2 dominoes where
each domino covers exactly two neighboring squares and the dominoes do not overlap: C then
covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the
board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with
another square uncovered. Let k(C) be the number of distinct maximal grid-aligned configurations
obtainable from C by repeatedly sliding dominoes. Find all possible values of k(C) as a function
of n.

Solution. The answer is that k(C) may be any positive integer up to and including (n− 1)2/4, as
well as (n+ 1)2/4. Below we assume that n ≥ 3.

We first prove that k(C) is at most (n + 1)2/4. We label the squares of the board by ordered
pairs (i, j) in the usual manner, and then color each square by one of three colors: if both of its
coordinates are odd, we color it red; if both of its coordinates are even, we color it blue; and if its
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coordinates have different parities, we color it white. Note that we then have exactly (n+1)2/4 red
squares, (n− 1)2/4 blue squares (together, (n2 +1)/2 dark squares), and (n2 − 1)/2 white squares.

In a maximal grid-aligned configuration, each domino covers a dark square and a white square.
We will refer to each domino by the color of the dark square it covers. We will call the square that
is not covered by dominoes empty. Note that, by parity, the empty square is colored dark.

Let Γ be the directed graph whose vertices are the dark squares, and whose directed edges are
drawn from a square v to the square that the domino covering v points to (the square that, if it
were empty, the domino could slide to in one move), if it exists. An example is shown in Figure 3.
Note that Γ uniquely determines the configuration of dominoes.

Figure 3: Illustration for a maximal grid-aligned configuration and its corresponding directed graph.

Let G be the undirected graph corresponding to Γ. Observe that the connected components of
G are formed by monochromatic dominoes (i.e., either all red or all blue). Suppose that C is a
cycle in G. Connecting the center points of the unit squares in C forms a polygon P . Since each
side of P has even length, the region surrounded by P can be divided into 2×2 squares, so the area
of the region is divisible by 4, and is thus even. By Pick’s Theorem, the area equals B/2 + I − 1,
where B is the number of unit squares in C, and I is the number of unit squares in the interior of
P . Since B is twice the number of dominoes in C, and C contains an even number of dominoes,
we find that I is odd, which can only be true if C encloses the empty square (i.e., contains it in its
interior).

Let T be the connected component of G that contains the empty square u; according to what
we just proved, T cannot contain a cycle, so it must be a tree. Let Γ(T ) be the subgraph of Γ on
T . Since T is a tree, it is valid to say whether the edges in Γ(T ) point towards u or away from it.
We claim that, in fact, each directed edge in Γ(T ) points towards u. Suppose indirectly that there
are some directed edges that point away from u, and choose one whose tail vertex v1 is closest to
u; let v2 be the head of this directed edge. Let v3 be the vertex in T that v1 is adjacent to along
the path from v1 to u. By assumption, the edge connecting v1 and v3 has v1 as its tail. But v2 and
v3 are different vertices, so v1 is the tail of more than one directed edge, which is a contradiction.
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This means that u is the universal sink of Γ(T ). We thus find that there is exactly one way to
make any vertex of Γ(T ) become the empty square: reverse the direction of each edge on the path
that connects that vertex to u, that is, slide each corresponding domino on that path towards u.
Therefore, k(C) equals the number of vertices in T . Since T is monochromatic, it can have at
most as many vertices as there are blue squares or red squares, which implies that k(C) is at most
(n+1)2/4. We can achieve k(C) = (n+1)2/4 by positioning the dominoes covering red squares in
a snake-like fashion. An example construction for n = 7 is shown in Figure 4.

Figure 4: A maximal grid-aligned configuration achieving k(C) = (n+ 1)2/4.

Suppose now that k(C) is more than (n−1)2/4; we will prove that k(C) then equals (n+1)2/4.
Let T be the connected component in G containing u. Since T is monochromatic and has more
than (n− 1)2/4 vertices, u must be red. We will prove that every vertex in T is a red square.

Since there are only (n− 3)2/4 red squares in the interior of the board, T must contain a square
on the boundary. As we may slide dominoes within T , without loss of generality we may assume
that u is on the boundary of the board. Since each red vertex other than u is the tail of an edge
in Γ, if v were not in U , then v would be on a cycle, but that is impossible as such a cycle would
need to contain u in its interior, but u is on the boundary of the board. This proves that every red
vertex of G is connected to u and thus k(C) equals the number of red squares, as claimed.

It remains to be shown that each value in {1, 2, . . . , (n−1)2/4}may equal k(C) for some maximal
grid-aligned configuration C. One possible construction involves positioning the dominoes covering
blue cells in a snake-like fashion, blocking the snake’s path with a red domino and an empty square,
and filling the rest of the grid with red dominoes. An example construction for n = 7 and k(C) = 5
is shown in Figure 5.

Problem 4 (226; 143, 6, 6, 3, 4, 5, 31, 28); proposed by Carl Schildkraut. A positive integer a is
selected, and some positive integers are written on a board. Alice and Bob play the following game.
On Alice’s turn, she must replace some integer n on the board with n + a, and on Bob’s turn, he
must replace some even integer n on the board with n/2. Alice goes first and they alternate turns.
If on his turn Bob has no valid moves, the game ends.
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Figure 5: A maximal grid-aligned configuration with n = 7 and k(C) = 5.

After analyzing the integers on the board, Bob realizes that, regardless of what moves Alice
makes, he will be able to force the game to end eventually. Show that, in fact, for this value of
a and these integers on the board, the game is guaranteed to end regardless of Alice’s or Bob’s
moves.

Solution. If there is only a single integer on the board, then all moves are determined uniquely,
and thus there is nothing to prove. Below we suppose that there are at least two numbers on the
board.

Before we make a precise claim regarding the game, let us recall that every positive integer m
can be written uniquely as m = 2k · c where c is odd; k is called the 2-adic valuation of m and is
denoted by ν2(m). Here, for our fixed value of a, we say that a positive integer m is 2-perfect if
ν2(m) = ν2(a), 2-abundant if ν2(m) > ν2(a), and 2-deficient if ν2(m) < ν2(a). We can now make
the following claims: If the board has at least one number that is 2-perfect or 2-abundant, then
Alice can prolong the game indefinitely, but if all numbers on the board are 2-deficient, then the
game will terminate (in a finite number of steps) no matter how Alice and Bob play.

For our proof, it is helpful to make the following observations about any positive integer m:

• if m is 2-perfect, then ν2(m+ a) > ν2(m), and thus m+ a is 2-abundant;

• if m is 2-abundant, then ν2(m+ a) = ν2(a), and thus m+ a is 2-perfect;

• if m is 2-deficient, then ν2(m+ a) = ν2(m), and thus m+ a remains 2-deficient.

To verify the first observation, let m = 2k · c1 and a = 2k · c2 for some nonnegative integer k and
odd integers c1 and c2. Then

m+ a = 2k · (c1 + c2),

where c1+c2 is even and hence ν2(m+a) > k. The other two observations can be deduced similarly.
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Now we turn to the proof of our claims. Assume first that the board contains at least one
number that is 2-perfect or 2-abundant; we claim that Alice can then move in such a way that
after her move the board contains at least one 2-abundant number. Indeed, if there is already a
2-abundant number on the board, she should leave it unchanged and add a to any other number,
and if there is a 2-perfect one, she can add a to it to make it 2-abundant. (Note that Alice may
have several such options, in which case she can choose any of them.) After Alice’s move, Bob
will have some moves available (for example, on the 2-abundant number on the board). He will
reduce the 2-adic valuation of one of the numbers on the board by exactly 1, but that will transfer
the scenario back to a case in which the board contains at least one number that is 2-perfect or
2-abundant. Alice can thus use this strategy to prolong the game indefinitely.

Suppose now that all numbers on the board are 2-deficient. We let S =
∑

ν2(n), where the
summation is taken over all integers on the board. By our observations above, every move that
Alice makes will leave S unchanged, while obviously each move that Bob makes reduces S by 1.
But then, after a finite number of rounds, there will be no more even numbers on the board, and
the game terminates.

Problem 5 (194; 98, 10, 13, 6, 2, 9, 16, 40); proposed by Ankan Bhattacharya. Let n ≥ 3 be an
integer. We say that an arrangement of the numbers 1, 2, . . . , n2 in an n× n table is row-valid if
the numbers in each row can be permuted to form an arithmetic progression, and column-valid if
the numbers in each column can be permuted to form an arithmetic progression. For what values
of n is it possible to transform any row-valid arrangement into a column-valid arrangement by
permuting the numbers in each row?

Solution. The answer is that the transformation is always possible when n is prime, but not always
when n is composite.

Suppose first that n is prime, and let C be any n × n row-valid table. Observe that, for each
remainder mod n, there are exactly n positive integers up to n2 that leave that remainder mod n.
Let us call a row of C uniform if its n elements all leave the same remainder mod n, and diverse if
the n elements all leave a different remainder mod n.

It is easy to see that each row of C is either uniform or diverse. Indeed, if we had two integers
in a row that left the same remainder mod n, then their difference, which is a multiple of the
common difference of the arithmetic progression corresponding to that row, would be a multiple of
n, and thus all elements in that row would leave the same remainder mod n. Observe also that if
C contains a uniform row, then that row includes all numbers with that remainder, so C cannot
also contain a diverse row.

Therefore, we have two cases for our row-valid table: either every row is uniform or every row is
diverse. In the first case, we can permute the elements in each row so that the jth column contains
the elements of the arithmetic progression

1 + (j − 1)n, 2 + (j − 1)n, . . . , n+ (j − 1)n

in some order, while in the second case, we can arrange that the jth column contains the arithmetic
progression

j, j + n, j + 2n, . . . , j + (n− 1)n

in some order. This proves our claim when n is prime.
Suppose now that n is composite with a proper divisor c > 1. To construct an example for

a row-valid table A that cannot be transformed into a column-valid one, we arrange the first n2
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positive integers by setting the jth entry in row i to be

ai,j =

{
i+ (j − 1)c if i ≤ c;
j + (i− 1)n if i > c.

(Thus the first cn positive integers occupy the first c rows of A, arranged in order by columns, and
the rest of the integers are placed in the last n− c rows, arranged in order by rows. An illustration
for n = 9 and c = 3 is provided below.)

1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
3 6 9 12 15 18 21 24 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81


Clearly, each row in A is an arithmetic progression. Suppose, indirectly, that it is possible to

permute the elements in the rows so that the table becomes column-valid; let table B be the result
of these permutations. Consider the column of B that contains 2. The elements in that column
cannot contain 1, since the arithmetic progression then would be (1, 2, . . . , n), which includes 2+ c
(since 2 + c ≤ n for n ≥ 4), but 2 and 2 + c are both in the second row (since 2 + c = a2,2).

Therefore, the elements in B in the column containing 2 are {2 + kd | k = 0, 1, . . . , n − 1} for
some positive integer d. The largest element in this set is 2 + (n− 1)d, for which we must have

n2 − n+ 1 ≤ 2 + (n− 1)d ≤ n2

as this element is in the last row of A; and these inequalities yield d = n. We have arrived at a
contradiction, since the integer 2 + n is then in the column containing 2 (with k = 1), but 2 + n is
in the same row as 2 (since a2,j = 2 + n for j = n/c+ 1). This is impossible.

Problem 6 (166; 22, 1, 0, 1, 0, 1, 0, 141); proposed by Zack Chroman. Let ABC be a triangle with
incenter I and excenters Ia, Ib, Ic opposite A, B, and C, respectively. Given an arbitrary point
D on the circumcircle of △ABC that does not lie on any of the lines IIa, IbIc, or BC, suppose
the circumcircles of △DIIa and △DIbIc intersect at two distinct points D and F . Let E be the
intersection of lines DF and BC. Prove that ∠BAD = ∠EAC.

Solution. Let ω, ω1, and ω2 be the circumcircles of △ABC, △DIIa, and △DIbIc, respectively. Let
P be the intersection of ω and ω1 that is not D.

Since I is the incenter and Ia is an excenter, ∠ICIa = ∠IBIa = 90◦, so BICIa is cyclic; let us
call this circle ωa. Since PD is the radical axis of ω and ω1, BC is the radical axis of ωa and ω,
and IIa is the radical axis of ωa and ω1, we have that PD, BC and IIa concur at a point K.

Let M be the intersection of IIa and ω. Since AI is an angle bisector of ∠BAC, M lies in the
midpoint of the arc B̂C in ω. Let E′ be the intersection of PM with BC. Let ∠BAM = α,∠ABC =
β, and note that because M is on the angle bisector of ∠BAC, ∠MBC = ∠MAC = ∠BAM = α.
Then ∠ABM = α+ β, while ∠BKM = 180◦ − ∠BKA = 180◦ − (180◦ − (α+ β)) = α+ β.
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Figure 6: Figure focusing on the interaction between ω and ω1.

By the Law of Sines applied to triangles ABM and BKM , we have

MB

sin (α)
=

MA

sin (α+ β)

and
MB

sin (α+ β)
=

MK

sin (α)
,

and therefore
MK ·MA = MB2.

Similarly, we can show that
ME′ ·MP = MB2. (5)

But then
ME′ ·MP = MK ·MA,

which implies, by the Power of a Point Theorem, that AKE′P is a cyclic quadrilateral.
Then

∠KAE′ = ∠KPE′ = ∠DPM = ∠DAM,

and thus
∠BAD = ∠BAM − ∠DAM = ∠CAM − ∠E′AM = ∠E′AC.

It follows that ∠BAD = ∠E′AC.
Now let Q be the intersection of ω and ω2 that is not D. Note that, because exterior angle

bisectors and interior angle bisectors are perpendicular, ∠IbBIc = ∠IbCIc = 90◦, so BCIcIb is a
cyclic quadrilateral. Let the circle containing BCIcIb be called ωbc. Since QD is the radical axis of
ω and ω2, BC is the radical axis of ωbc and ω, and IbIc is the radical axis of ωbc and ω2, we have
that QD, BC, and IbIc concur at a point L.

Let N be the midpoint of the arc B̂C but on the other side of M , that is, N is the intersection
of IbIc and ω other than A. Let E′′ be the intersection of QN and BC. By analogous reasoning
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Figure 7: Figure once we include the interactions with ω2.

as above, we can show that ALE′′Q is cyclic and get that ∠BAD = ∠E′′AC. Since E′′ is on the
segment BC and satisfies ∠E′′AC = ∠E′AC, we must have E′ = E′′. Therefore PM ∩QN = E′.

Let X and Y be the reflections of E′ over M and N , respectively. Note that

∠IBM = ∠IBC + ∠CBM = ∠IBA+ ∠IAC = ∠IBA+ ∠IAB = ∠BIM,

and thus MI = MB. We can similarly show MB = MIa, and conclude that MB = MI = MIa.
Using this and (5) yields

MX ·MP = ME′ ·MP = MB2 = MI ·MIa,

proving that X lies on ω1. Similarly, we see that Y lies on ω2. Now since E′ = PM ∩QN , we have
E′P · E′M = E′Q · E′N , so

E′P · E′X = E′P · (2E′M) = E′Q · (2E′N) = E′Q · E′Y,

proving that E′ has equal powers in ω1 and ω2. Therefore, E
′ lies on their radical axis DF . Since

E′ is on DF and on BC, it must be that E′ = E. We can now conclude that ∠BAD = ∠EAC.
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