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Triangular Numbers

What are triangular numbers?

1st 2nd 3rd

n
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Triangular Numbers

n(n+1)

The n-th triangular number, A, is 5

Classic proof:

Ap=1+4+2+---+n
Ap=n+n—-1)+---+1
2Ap=(n+1)+(n+1)+---+(n+1)

20An=n(n+1)
n(n+1

Combinatorial Proof:
n n i—1
, n+1
E I_E 51_<2>.
i=1 i=1 j=0
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Probabilistic Proof

Let X be the sum of two uniformly-distributed n-sided dice.

(k=1)

2<k<n+1
PX=kK={ ™~ "= =
X =k {n—f+1 k=n+iwith2<i<n

n2
Since 2 < X < 2n, then
n n—i+1

1_ZIP>[X k] = 2 +§;n2
1=

1 2 n n—-1 n-2 1
=\t rttR) T e T T
P=1+2+-+n+(1+2+---+(n-1))

P =2(1+42+---4+n)—n.

e gy 1
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Playing with Triangular Numbers

1+3+6=10

McMullen, inspired by this, asked himself:

@ For which k can we find k consecutive triangular numbers that
add up to be a triangular number?

@ Can we find the solutions?

McMullen showed there are infinitely many solutions for k = 2,3, 5, but
no solutions for k = 4.
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Example
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Elementary manipulations show that the sum of the k-consecutive
triangular numbers starting at A, is A, whenever

o (k—1)(K?+ k- 3)

(2m+1)? — k(2n + k) 3

When k = 4 we get
2m+1—-4n—-8)2m+1+4n+8)=17.
From which

(m,n) = (4,0),(4,—4),(-5,0), and (-5, —4).
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Let k > 4 be a square. Then there exist k consecutive triangular
numbers that add up to make a bigger triangular number.
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Useful Factorization

Let k = &°.

Then
& 422 +3

(2m+1)2 - &2(2n+ &°)? = 3

(a+1)(a—1)(a*+a-3)
3

(2m+1+2na+a)(2m+1+2na+a®) =
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k an even square

(2m+1—2na—a®)(2m+1+2na+a®) = a6—4';332+3
Solving
2m+1-2na—a =1
2m + 1 +2na+33:ae—4;)32+3
yields
4 4\(a2
m (@ 41;)(3 )
"o a(a —1ga—4)
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k an odd square

We’ll consider three cases:

a=0 (mod3)
a=1 (mod3)
a=2 (mod3)
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a=1mod3ora=0mod3

1)(a—1)(a* +& -
(2m+1+2na+a3)(2m+1+2na+613):(aJr (@ :)B(a +a-3)

Solving

2m+1-2na—a =a+1
(a—1)(a*+ & —3)

2m+1+2na+a° =

3
yields
m az(a—11)2(a2+1)
_ (a+2)(a—3)(@+1)
n= 12
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a=2mod3ora=0mod3

1)(a—1)(a* +& -
(2m+1+2na+a3)(2m+1+2na+613):(aJr (@ :)B(a +a-3)

Solving

2m+1-2na—a =a—1
(a+1)(a*+ & —3)
3

2m+1+2na+a° =

yields

_a@+at+a+a 12
- 12

(a+3)(a—2)(a +1)
12
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k=6

Recall )
(2m+1)2 — k(2n+ k2 = K= 1)(k3+k_3).

When k = 6:

x? — 6y? = 65.
Therefore x2 = 6y? mod 13. But

(8-

Therefore, there are no solutions for k = 6 mod 13.
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A sufficient condition for k

Lemma
Let g > 3 be a prime number. Suppose that k € Z is such that
@ k is not a square modulo q,
Q g k®+k-3.
Then there are no k consecutive triangular numbers that add up to a
triangular number.

Example:

If kK = 45 mod 53 and k # 2430 mod 532. There are 52 residues
modulo 532 which satisfy these conditions.
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Let K(x) be the number of k’s such that k < x that have solutions.
Then:

X
Vlog(x)’

Note: f(x) < g(x) if there exists a positive constant C such that
f(x) < C|g(x)| for large enough x.

Vx < K(x) <

This theorem implies that the existence of k consecutive triangular
numbers that add up to a triangular number is a rare occurrence.
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Finding g such that g || k2 + k — 3 and (k/q) = —1

If g # 13, k? + k — 3 = 0 mod g has two distinct solutions ki, k»
whenever (13/q) = 1. We then have three possibilities

@ Both k4, k> are squares modulo q.

© One of kq, k» is a square and the other one isn't.

© Neither k4, ko are squares modulo q.
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A pair of important sets of primes

Let A be the set of primes g for which we have kq, ko both nonsquares
modulo q.

Let B be the set of primes q for which exactly one of k4, ko is a square
modulo q.

If g € A, then the proportion of residues modulo g one must avoid are

,q-1_2 2

@ q ¢

If g € B, then the proportion of residues modulo g2 one must avoid are

g-1 1 1

G2 q g
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A useful example

Consider the polynomial x2 + 1.
@ x2 + 1 is irreducible in Q[x]
@ x>+ 1= (x+1)%inZy[x]
@ X2 +1=(x+2)(x+3)in Zs[x]
@ X2 +1 = (x+5)(x+8)inZi3x]
@ x2 + 1 can be factored in Zp[x] whenever p = 1 mod 4. In fact

o (e (557)) o (557))

@ x2 + 1 is irreducible in Zp[x] for p = 3 mod 4.

?=-1modps o' =(-1)P/2 mod p
& (=1)P1/2 =1 mod p< p =3 mod 4.
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Quantifying the proportion of primes in A, B

Consider f(x) = x* + x2 — 3. Let's analyze how f(x) might factor in Z.
There are several possibilities

e (1,1,1,1)
e (1,1,2)
@ (2,2
o4
Primes in B would split as (1,1,2).

Primes in .4 would be primes that are squares modulo 13 and that
don't split as (1,1,2) or (1,1,1,1).
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Chebotarev Density Theorem

Suppose that f(x) € Z[x] is monic and irreducible over Q, with

deg f(x) = n. Let L be the splitting field of f(x) over Q. Fix a partition
(k1,...,kr) Of n(that is, a tuple of positive integers ky > ko > --- > K,
with ki + - -- + k, = n). Let § be the proportion of elements of Gal(L/Q)
which, when viewed as permutations on the roots of f(x), have cycle
type (ky, ..., k). For all but finitely many primes p, the polynomial f(x)
factors as a product of distinct monic irreducible polynomials modulo p,
and ¢ is the proportion of primes for which these irreducibles have
degrees ki, . .., k.
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Chebotarev in our problem

Consider f(x) = x* + x2 — 3. f is irreducible over Q, let L. be the
splitting field of f over Q, then Gal(IL/Q) is isomorphic to

{(1),(1324),(12)(34), (14283), (34),(13)(24),(12), (14)(23) }.

@ 1 of the 8 elements decomposes as (1,1,1,1)
@ 3 of the 8 elements decompose as (2,2)

@ 2 of the 8 elements decompose as (1,1,2)

@ 2 of the 8 elements decompose as (4)

The proportion of primes q € B (one root a square, the other root a
non-square) is 2/8 = 1/4.

The proportion of primes g € A (both roots non-squares) is
1/2—1/8-2/8 =1/8.
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Idea of Proof

There are several residues modulo certain squares of primes that must
be avoided for k to be able to yield solutions.

We then get the following upper bound heuristic:

K(x)<<xH<1—2+52>H<1_1+1>

2
q<x g<x 9 49
qeA qeB

< x 1 1
(log'/8 x)2 ) \ log"*(x)

< X

Vieg x'
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Non-Chebotarev (weaker) proof

One could avoid the use of Chebotarev to get that K(x) = o(x).
Namely, the primes in B can be characterized as primes q satisfying

()1t ()
q q

The primes in 5 have proportion 1/4.

Then

X
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Let K(x) be the number of k’s such that k < x that have solutions.
Then:

VX < K(x) < X
og(X)

| N\

Corollary
K(x) = o(x), i.e., the natural density of k’s for which there is a solution
is 0.
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On the hunt for a lower bound

Our goal is solving

(2m+ 12 — k(2n+ k)2 = K= 1)(";“‘_3).
Let p be a prime number satisfying:
@ p=7mod 24
@ p? + p — 3is not divisible by any prime g for which p mod g is a
nonsquare
© Q(y/p) has class number 1.

Then there exist p consecutive triangular numbers that add up to a
triangular number.
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k=127

We want to solve

(2m+1)2 — 127(2n + 127)® = 682626 = 2 x 3 x 7 x 16253.

@ 127 =1 mod 42, so 127 is a square modulo 2, 3 and 7.
@ 5412 = 127 mod 16253, so 127 is a square modulo 16253.
@ Q(v127) has class number 1.

Let g € {2,3,7,16253}. There exists x4 + yqv/ 127 with norm q.

® xo = 2175,y = 193 121752 — 127(193)2| = 2.
® x3 =293, y; = 26 12932 — 127(26)2| = 3.
® x; =45y, =4 1452 — 127(4)2| = 7.

@ Xigo53 = 2325, Y1053 = 206 |23252 — 127(206)?| = 16253.
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Solutionto k =7

(45 + 4v/127)(293 + 26+/127)(2175 + 193v/127)(2325 + 2061/127)
— 533462754763 + 47337164797V/127

Let
Xx = 533462754763, y =47337164797.

Then
x? —127y? = 682626.

We want to solve 2m+ 1 = x and 2n+ 127 = y.
m = 266731377381, n = 23668582335.

Ap+Appr+- -+ Appios = A
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Cohen-Lenstra Heuristics

Let P be the set of prime numbers p satisfying
@ p=7mod24
@ p? + p — 3 is not divisible by any prime q for which p mod q is a
nonsquare
Q Q(y/p) has class number 1.
The proportion of such primes is 75.45%.

This suggests
X
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Thank you!
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