## Playing with Triangular Numbers

## Enrique Treviño



## UTEP Colloquium February 15, 2019

Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 1 / 32

# Coauthors

## Dipika Subramaniam



Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 2 / 32

## Paul Pollack



Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 3 / 32

2

イロト イヨト イヨト イヨト

What are triangular numbers?



# **Triangular Numbers**

The *n*-th triangular number, 
$$\Delta_n$$
 is  $\frac{n(n+1)}{2}$   
Classic proof:

$$\Delta_{n} = 1 + 2 + \dots + n$$
  

$$\Delta_{n} = n + (n - 1) + \dots + 1$$
  

$$2\Delta_{n} = (n + 1) + (n + 1) + \dots + (n + 1)$$
  

$$2\Delta_{n} = n(n + 1)$$
  

$$\Delta_{n} = \frac{n(n + 1)}{2}.$$

**Combinatorial Proof:** 

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n} \sum_{j=0}^{i-1} 1 = \binom{n+1}{2}.$$

Enrique Treviño (Lake Forest College)

2

イロト イヨト イヨト イヨト

## **Probabilistic Proof**

Let *X* be the sum of two uniformly-distributed *n*-sided dice.

$$\mathbb{P}[X=k] = \begin{cases} \frac{(k-1)}{n^2}, & 2 \le k \le n+1\\ \frac{n-i+1}{n^2}, & k=n+i \text{ with } 2 \le i \le n \end{cases}$$

Since  $2 \le X \le 2n$ , then

$$1 = \sum_{k=2}^{2n} \mathbb{P}[X = k] = \sum_{k=2}^{n+1} \frac{k-1}{n^2} + \sum_{i=2}^{n} \frac{n-i+1}{n^2}$$
$$1 = \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right) + \left(\frac{n-1}{n^2} + \frac{n-2}{n^2} + \dots + \frac{1}{n^2}\right)$$
$$n^2 = (1+2+\dots+n) + (1+2+\dots+(n-1))$$
$$n^2 = 2(1+2+\dots+n) - n.$$

## 1 + 3 + 6 = 10

McMullen, inspired by this, asked himself:

- For which *k* can we find *k* consecutive triangular numbers that add up to be a triangular number?
- Can we find the solutions?

McMullen showed there are infinitely many solutions for k = 2, 3, 5, but no solutions for k = 4.



Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 8 / 32

2

(日) (四) (日) (日) (日)

Elementary manipulations show that the sum of the *k*-consecutive triangular numbers starting at  $\Delta_n$  is  $\Delta_m$  whenever

$$(2m+1)^2 - k(2n+k)^2 = \frac{(k-1)(k^2+k-3)}{3}.$$

When k = 4 we get

$$(2m+1-4n-8)(2m+1+4n+8) = 17.$$

From which

$$(m, n) = (4, 0), (4, -4), (-5, 0), \text{ and } (-5, -4).$$

Enrique Treviño (Lake Forest College)

< ロ > < 同 > < 回 > < 回 >

#### Theorem

Let k > 4 be a square. Then there exist k consecutive triangular numbers that add up to make a bigger triangular number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let  $k = a^2$ .

Then

$$(2m+1)^2 - a^2(2n+a^2)^2 = \frac{a^6-4a^2+3}{3}.$$

$$(2m+1+2na+a^3)(2m+1+2na+a^3) = \frac{(a+1)(a-1)(a^4+a^2-3)}{3}$$

Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 11 / 3

æ

$$(2m+1-2na-a^3)(2m+1+2na+a^3)=\frac{a^6-4a^2+3}{3}$$

Solving

$$2m + 1 - 2na - a^{3} = 1$$
  
$$2m + 1 + 2na + a^{3} = \frac{a^{6} - 4a^{2} + 3}{3}$$

yields

$$m = \frac{(a^4 - 4)(a^2)}{12}$$
$$n = \frac{a(a^4 - 6a - 4)}{12}$$

Enrique Treviño (Lake Forest College)

UTEP Colloquium 12 / 32

æ

We'll consider three cases:

 $a \equiv 0 \pmod{3}$  $a \equiv 1 \pmod{3}$  $a \equiv 2 \pmod{3}$ 

< ロ > < 同 > < 回 > < 回 >

$$(2m + 1 + 2na + a^3)(2m + 1 + 2na + a^3) = \frac{(a + 1)(a - 1)(a^4 + a^2 - 3)}{3}$$

Solving

$$2m + 1 - 2na - a^3 = a + 1$$
  
 $2m + 1 + 2na + a^3 = \frac{(a - 1)(a^4 + a^2 - 3)}{3}$ 

yields

$$m = \frac{a^2(a-1)(a^2+1)}{12}$$
$$n = \frac{(a+2)(a-3)(a^2+1)}{12}$$

Enrique Treviño (Lake Forest College)

æ

イロト イヨト イヨト イヨト

$$(2m + 1 + 2na + a^3)(2m + 1 + 2na + a^3) = \frac{(a + 1)(a - 1)(a^4 + a^2 - 3)}{3}$$

Solving

$$2m + 1 - 2na - a^3 = a - 1$$
  
 $2m + 1 + 2na + a^3 = \frac{(a + 1)(a^4 + a^2 - 3)}{3}$ 

yields

$$m = \frac{a^5 + a^4 + a^3 + a^2 - 12}{12}$$
$$n = \frac{(a+3)(a-2)(a^2+1)}{12}$$

Enrique Treviño (Lake Forest College)

æ

イロト イヨト イヨト イヨト

#### Recall

$$(2m+1)^2 - k(2n+k)^2 = \frac{(k-1)(k^2+k-3)}{3}.$$

When k = 6:

$$x^2 - 6y^2 = 65.$$

Therefore  $x^2 \equiv 6y^2 \mod 13$ . But

$$\left(\frac{6}{13}\right) = -1.$$

Therefore, there are no solutions for  $k \equiv 6 \mod 13$ .

< ロ > < 同 > < 回 > < 回 >

#### Lemma

Let q > 3 be a prime number. Suppose that  $k \in \mathbb{Z}$  is such that

- k is not a square modulo q,
- **2**  $q \parallel k^2 + k 3.$

Then there are no k consecutive triangular numbers that add up to a triangular number.

Example:

If  $k \equiv 45 \mod 53$  and  $k \not\equiv 2430 \mod 53^2$ . There are 52 residues modulo  $53^2$  which satisfy these conditions.

#### Theorem

Let K(x) be the number of k's such that  $k \le x$  that have solutions. Then:

$$\sqrt{x} \leq K(x) \ll rac{x}{\sqrt{\log(x)}}.$$

Note:  $f(x) \ll g(x)$  if there exists a positive constant *C* such that  $f(x) \leq C|g(x)|$  for large enough *x*.

## Remark

This theorem implies that the existence of k consecutive triangular numbers that add up to a triangular number is a rare occurrence.

If  $q \neq 13$ ,  $k^2 + k - 3 \equiv 0 \mod q$  has two distinct solutions  $k_1, k_2$  whenever (13/q) = 1. We then have three possibilities

- **1** Both  $k_1, k_2$  are squares modulo q.
- One of  $k_1, k_2$  is a square and the other one isn't.
- Solution Neither  $k_1, k_2$  are squares modulo q.

# A pair of important sets of primes

Let A be the set of primes q for which we have  $k_1, k_2$  both nonsquares modulo q.

Let  $\mathcal{B}$  be the set of primes q for which exactly one of  $k_1, k_2$  is a square modulo q.

If  $q \in \mathcal{A}$ , then the proportion of residues modulo  $q^2$  one must avoid are

$$2\frac{q-1}{q^2} = \frac{2}{q} - \frac{2}{q^2}.$$

If  $q \in \mathcal{B}$ , then the proportion of residues modulo  $q^2$  one must avoid are

$$\frac{q-1}{q^2}=\frac{1}{q}-\frac{1}{q^2}.$$

# A useful example

Consider the polynomial  $x^2 + 1$ .

• 
$$x^2 + 1$$
 is irreducible in  $\mathbb{Q}[x]$ 

• 
$$x^2 + 1 = (x + 1)^2$$
 in  $\mathbb{Z}_2[x]$ 

• 
$$x^2 + 1 = (x + 2)(x + 3)$$
 in  $\mathbb{Z}_5[x]$ 

• 
$$x^2 + 1 = (x + 5)(x + 8)$$
 in  $\mathbb{Z}_{13}[x]$ 

•  $x^2 + 1$  can be factored in  $\mathbb{Z}_p[x]$  whenever  $p \equiv 1 \mod 4$ . In fact

$$x^2 + 1 = \left(x - \left(rac{p-1}{2}
ight)!
ight)\left(x + \left(rac{p-1}{2}
ight)!
ight) \mod p$$

•  $x^2 + 1$  is irreducible in  $\mathbb{Z}_p[x]$  for  $p \equiv 3 \mod 4$ .

$$\alpha^{2} \equiv -1 \mod p \Leftrightarrow \alpha^{p-1} \equiv (-1)^{(p-1)/2} \mod p$$
$$\Leftrightarrow (-1)^{(p-1)/2} \equiv 1 \mod p \Leftrightarrow p \equiv 3 \mod 4.$$

< 47 ▶

# Quantifying the proportion of primes in $\mathcal{A}, \mathcal{B}$

Consider  $f(x) = x^4 + x^2 - 3$ . Let's analyze how f(x) might factor in  $\mathbb{Z}_q$ . There are several possibilities

- (1,1,1,1)
- (1,1,2)
- (2,2)
- 4

Primes in  $\mathcal{B}$  would split as (1,1,2).

Primes in A would be primes that are squares modulo 13 and that don't split as (1,1,2) or (1,1,1,1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Theorem

Suppose that  $f(x) \in \mathbb{Z}[x]$  is monic and irreducible over  $\mathbb{Q}$ , with deg f(x) = n. Let  $\mathbb{L}$  be the splitting field of f(x) over  $\mathbb{Q}$ . Fix a partition  $\langle k_1, \ldots, k_r \rangle$  of n (that is, a tuple of positive integers  $k_1 \ge k_2 \ge \cdots \ge k_r$  with  $k_1 + \cdots + k_r = n$ ). Let  $\delta$  be the proportion of elements of  $\operatorname{Gal}(\mathbb{L}/\mathbb{Q})$  which, when viewed as permutations on the roots of f(x), have cycle type  $\langle k_1, \ldots, k_r \rangle$ . For all but finitely many primes p, the polynomial f(x) factors as a product of distinct monic irreducible polynomials modulo p, and  $\delta$  is the proportion of primes for which these irreducibles have degrees  $k_1, \ldots, k_r$ .

Enrique Treviño (Lake Forest College)

Consider  $f(x) = x^4 + x^2 - 3$ . *f* is irreducible over  $\mathbb{Q}$ , let  $\mathbb{L}$  be the splitting field of *f* over  $\mathbb{Q}$ , then  $Gal(\mathbb{L}/\mathbb{Q})$  is isomorphic to

 $\{(1),(1324),(12)(34),(1423),(34),(13)(24),(12),(14)(23)\}.$ 

- 1 of the 8 elements decomposes as (1,1,1,1)
- 3 of the 8 elements decompose as (2,2)
- 2 of the 8 elements decompose as (1,1,2)
- 2 of the 8 elements decompose as (4)

The proportion of primes  $q \in \mathcal{B}$  (one root a square, the other root a non-square) is 2/8 = 1/4.

The proportion of primes  $q \in A$  (both roots non-squares) is 1/2 - 1/8 - 2/8 = 1/8.

-

There are several residues modulo certain squares of primes that must be avoided for k to be able to yield solutions. We then get the following upper bound heuristic:

$$\begin{split} \mathcal{K}(x) &\ll x \prod_{\substack{q \leq x \\ q \in \mathcal{A}}} \left(1 - \frac{2}{q} + \frac{2}{q^2}\right) \prod_{\substack{q \leq x \\ q \in \mathcal{B}}} \left(1 - \frac{1}{q} + \frac{1}{q^2}\right) \\ &\ll x \left(\frac{1}{(\log^{1/8} x)^2}\right) \left(\frac{1}{\log^{1/4}(x)}\right) \\ &\ll \frac{x}{\sqrt{\log x}}. \end{split}$$

Enrique Treviño (Lake Forest College)

< ロ > < 同 > < 回 > < 回 >

One could avoid the use of Chebotarev to get that K(x) = o(x). Namely, the primes in  $\mathcal{B}$  can be characterized as primes q satisfying

$$\left(\frac{13}{q}\right) = 1$$
 &  $\left(\frac{-3}{q}\right) = -1.$ 

The primes in  $\mathcal{B}$  have proportion 1/4.

Then

$$K(x) \ll \frac{x}{(\log(x))^{1/4}}.$$

4 3 5 4 3

4 A N

#### Theorem

Let K(x) be the number of k's such that  $k \le x$  that have solutions. Then:

$$\sqrt{x} \leq K(x) \ll \frac{x}{\sqrt{\log(x)}}.$$

#### Corollary

K(x) = o(x), i.e., the natural density of k's for which there is a solution is 0.

3

イロト イポト イヨト イヨト

Our goal is solving

$$(2m+1)^2 - k(2n+k)^2 = \frac{(k-1)(k^2+k-3)}{3}.$$

Let *p* be a prime number satisfying:

- $p \equiv 7 \mod 24$
- 2  $p^2 + p 3$  is not divisible by any prime q for which  $p \mod q$  is a nonsquare
- 3  $\mathbb{Q}(\sqrt{p})$  has class number 1.

Then there exist *p* consecutive triangular numbers that add up to a triangular number.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We want to solve

$$(2m+1)^2 - 127(2n+127)^2 = 682626 = 2 \times 3 \times 7 \times 16253.$$

- $127 \equiv 1 \mod 42$ , so 127 is a square modulo 2, 3 and 7.
- $541^2 \equiv 127 \mod 16253$ , so 127 is a square modulo 16253.

•  $\mathbb{Q}(\sqrt{127})$  has class number 1.

Let  $q \in \{2, 3, 7, 16253\}$ . There exists  $x_q + y_q \sqrt{127}$  with norm q.

•  $x_2 = 2175, y_2 = 193$ •  $x_3 = 293, y_3 = 26$ •  $x_7 = 45, y_7 = 4$ | $2175^2 - 127(193)^2| = 2.$ | $293^2 - 127(26)^2| = 3.$ | $45^2 - 127(4)^2| = 7.$ 

• 
$$x_{16253} = 2325, y_{16253} = 206$$

 $|2325^2 - 127(206)^2| = 16253.$ 

э

A (10) A (10)

 $\begin{array}{l} (45+4\sqrt{127})(293+26\sqrt{127})(2175+193\sqrt{127})(2325+206\sqrt{127})\\ = 533462754763+47337164797\sqrt{127}\end{array}$ 

Let

$$x = 533462754763, \qquad y = 47337164797.$$

Then

$$x^2 - 127y^2 = 682626.$$

We want to solve 2m + 1 = x and 2n + 127 = y.

 $m = 266731377381, \qquad n = 23668582335.$ 

$$\Delta_n + \Delta_{n+1} + \cdots + \Delta_{n+126} = \Delta_m.$$

< ロ > < 同 > < 回 > < 回 >

## Conjecture

Let  $\mathcal{P}$  be the set of prime numbers p satisfying

- $p \equiv 7 \mod 24$
- 2  $p^2 + p 3$  is not divisible by any prime q for which p mod q is a nonsquare
- **3**  $\mathbb{Q}(\sqrt{p})$  has class number 1.

The proportion of such primes is 75.45%.

This suggests

$$\mathcal{K}(x) \gg \frac{x}{\log^{3/2}(x)}.$$

# Thank you!

Enrique Treviño (Lake Forest College)

Playing with Triangular Numbers

UTEP Colloquium 32 / 32

æ