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There are infinitely many primes

Start with q1 = 2. Supposing that qj has been defined for
1 ≤ j ≤ k , continue the sequence by choosing a prime qk+1 for
which

qk+1 | 1 +
k∏

j=1

qj .

Then ‘at the end of the day’, the list q1,q2,q3, . . . is an infinite
sequence of distinct prime numbers.

Enrique Treviño The primes that Euclid forgot



The primes that Euclid forgot
Squares and non-squares modulo p

The main theorem

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin
suggested two possible unique sequences.

The first is to take q1 = 2, then define recursively qk to be
the smallest prime dividing 1 + q1q2 . . . qk−1.
i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139,
2801, 11, 17, 5471, 52662739, . . .
It is conjectured that the first Mullin sequence touches all
the primes eventually.
Not much is known of this sequence.
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Second Euclid-Mullin Sequence

The second Mullin sequence is to take q1 = 2, then define
recursively qk to be the largest prime dividing
1 + q1q2 . . . qk−1.
i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339,
4680225641471129, . . . .
Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19,
23, 29, 31, 37, 41, 47, and 53 are missing from the first
Euclid-Mullin sequence.
Booker in 2012 showed that infinitely many primes are
missing from the sequence.
Booker’s proof uses deep theorems from analytic number
theory such as the Burgess inequality.
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Squares

Consider the sequence

2,5,8,11, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:
n ≡ 0, 1 or 2 (mod 3).
If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).
If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).
If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).

Enrique Treviño The primes that Euclid forgot



The primes that Euclid forgot
Squares and non-squares modulo p

The main theorem

Squares

Consider the sequence

2,5,8,11, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:
n ≡ 0, 1 or 2 (mod 3).
If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).
If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).
If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).
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Squares and non-squares

Let n be a positive integer. For q ∈ {0,1,2, . . . ,n− 1}, we call q
a square modn if there exists an integer x such that x2 ≡ q
(mod n). Otherwise we call q a non-square.

For n = 3, the squares are {0,1} and the non-square is 2.
For n = 5, the squares are {0,1,4} and the non-squares
are {2,3}.
For n = 7, the squares are {0,1,2,4} and the non-squares
are {3,5,6}.
For n = p, an odd prime, there are p+1

2 squares and p−1
2

non-squares.
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Least non-square

How big can the least non-square be?
Let g(p) be the least non-square modulo p.

p Least non-square
3 2
5 2
7 3
11 2
13 2
17 3
19 2
23 5
29 2
31 3
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p Least non-square
7 3
23 5
71 7

311 11
479 13

1559 17
5711 19
10559 23
18191 29
31391 31

422231 37
701399 41
366791 43

3818929 47
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An elementary bound for g(p)

Let g(p) be the least non-square mod p.

Theorem
g(p) ≤ √p + 1.

Proof.
Suppose g(p) = q with q >

√
p + 1. Let k be the ceiling of p/q.

Then p < kq < p + q, so kq ≡ a mod p for some 0 < a < q,
and therefore kq is a square modulo p. Since q >

√
p + 1, then

p/q <
√

p, so k is at most the ceiling of
√

p <
√

p + 1 < q.
Therefore k is a square modulo p. But if k and kq are squares
modulo p, then q is a square modulo p. Contradiction!
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Consecutive squares or non-squares

Let H(p) be the largest string of consecutive nonzero squares
or non-squares modulo p.
For example, with p = 7 we have that the nonzero squares are
{1,2,4} and the non-squares are {3,5,6}. Therefore H(7) = 2.

p H(p)
11 3
13 4
17 3
19 4
23 4
29 4
31 4
37 4
41 5
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An elementary bound for H(p)

Sketch of a proof that H(p) < 2
√

p.

The largest string of non-squares is < 2
√

p.
Suppose {a + 1,a + 2, . . . ,a + H} are all squares mod p.
For n a non-square, na + n, . . . ,na + Hn are non-squares.
If Hn > p, then H(p) ≤ n − 1. Therefore
H(p) ≤ max {p/n,n − 1,2

√
p}.

If n ∈ (
√

p/2,2
√

p] we have H(p) < 2
√

p.
Let k be the largest integer such that k2g(p) ≤ √p/2.
(k + 1)2g(p) > 2

√
p ≥ 4k2g(p) implies (2k + 1) > 3k2

which is false for each k ≥ 1. Therefore there is a
non-square in the interval (

√
p/2,2

√
p], yielding

H(p) < 2
√

p.
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Theorem
Let Q1,Q2, . . .Qr be the smallest r primes omitted from the
second Euclid-Mullin sequence, where r ≥ 0. Then there is
another omitted prime smaller than

122

(
r∏

i=1

Qi

)2

.

Using the deep results of Burgess, Booker showed that the
exponent can be replaced with any real number larger than

1
4
√

e − 1
= 0.178734 . . . , provided that 122 is also replaced by

a possibly larger constant.
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Proof Sketch

Let X = 122(
∏r

i=1 Qi)
2. Assume there is no prime missing from

[2,X ] besides Q1, . . . ,Qr . Let p be the prime in [2,X ] that is last
to appear in the sequence {qi}.
Let n be such that qn = p. Then 1 + q1 . . . qn−1 = Qe1

1 . . .Qer
r pe.

Let d be the smallest number satisfying the following
conditions:

(i) d ≡ 1 (mod 4),
(ii) d ≡ −1 (mod Q1 . . .Qr )
(iii) d and −1 are either both squares mod p or both

non-squares mod p.
Using the Chinese Remainder Theorem and the bound on
H(p) yields that d ≤ X .
Given the conditions on d and using that d ≤ X shows that
d is both a square and a non-square mod
1 + q1q2 . . . qn−1. Contradiction!
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Thank you!
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