The primes that Euclid forgot

Enrique Treviño

joint work with Paul Pollack

USTARS at Purdue University April 20, 2013

→ Ξ → < Ξ →</p>

< < >> < </>

э

There are infinitely many primes

Start with $q_1 = 2$. Supposing that q_j has been defined for $1 \le j \le k$, continue the sequence by choosing a prime q_{k+1} for which

$$q_{k+1} \mid 1 + \prod_{j=1}^k q_j.$$

Then 'at the end of the day', the list $q_1, q_2, q_3, ...$ is an infinite sequence of distinct prime numbers.

▲帰▶ ▲臣▶ ▲臣▶

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_1 = 2$, then define recursively q_k to be the **smallest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

・ロト ・聞 ト ・ヨト ・ヨト

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take q₁ = 2, then define recursively q_k to be the **largest** prime dividing 1 + q₁q₂...q_{k-1}.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- Booker's proof uses deep theorems from analytic number theory such as the Burgess inequality.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

イロト イポト イヨト イヨト

Consider the sequence

Can it contain any squares?

- Every positive integer *n* falls in one of three categories: $n \equiv 0, 1 \text{ or } 2 \pmod{3}$.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

イロト イポト イヨト イヨト

Squares and non-squares

Let *n* be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call *q* a square mod *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise we call *q* a non-square.

- For n = 3, the squares are $\{0, 1\}$ and the non-square is 2.
- For *n* = 5, the squares are {0,1,4} and the non-squares are {2,3}.
- For n = 7, the squares are {0, 1, 2, 4} and the non-squares are {3, 5, 6}.
- For n = p, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.

ヘロト 人間 とくほとくほとう

Least non-square

How big can the least non-square be? Let g(p) be the least non-square modulo p.

p	Least non-square	
3	2	
5	2	
7	3	
11	2	
13	2	
17	3	
19	2	
23	5	
29	2	
31	3	

くぼう くほう くほう

3

р	Least non-square
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
422231	37
701399	41
366791	43
3818929	47

Let g(p) be the least non-square mod p.

Theorem $g(p) \leq \sqrt{p} + 1.$

Proof.

Suppose g(p) = q with $q > \sqrt{p} + 1$. Let *k* be the ceiling of p/q. Then p < kq < p + q, so $kq \equiv a \mod p$ for some 0 < a < q, and therefore kq is a square modulo *p*. Since $q > \sqrt{p} + 1$, then $p/q < \sqrt{p}$, so *k* is at most the ceiling of $\sqrt{p} < \sqrt{p} + 1 < q$. Therefore *k* is a square modulo *p*. But if *k* and *kq* are squares modulo *p*, then *q* is a square modulo *p*. Contradiction!

◆□ → ◆◎ → ◆臣 → ◆臣 → ○

Consecutive squares or non-squares

Let H(p) be the largest string of consecutive nonzero squares or non-squares modulo p.

For example, with p = 7 we have that the nonzero squares are $\{1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$. Therefore H(7) = 2.

р	H(p)
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4
41	5

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a + 1, a + 2, \dots, a + H\}$ are all squares mod p.
- For *n* a non-square, na + n, ..., na + Hn are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n-1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a + 1, a + 2, \dots, a + H\}$ are all squares mod p.
- For *n* a non-square, na + n, ..., na + Hn are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n-1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a + 1, a + 2, \dots, a + H\}$ are all squares mod p.
- For *n* a non-square, na + n, ..., na + Hn are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a + 1, a + 2, \dots, a + H\}$ are all squares mod p.
- For *n* a non-square, na + n, ..., na + Hn are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n-1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a + 1, a + 2, \dots, a + H\}$ are all squares mod p.
- For *n* a non-square, na + n, ..., na + Hn are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n-1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_1, Q_2, ..., Q_r$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \ge 0$. Then there is another omitted prime smaller than

$$12^2 \left(\prod_{i=1}^r Q_i\right)^2.$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4\sqrt{e}-1} = 0.178734..., \text{ provided that } 12^2 \text{ is also replaced by}$ a possibly larger constant.

ヘロト ヘ戸ト ヘヨト ヘヨト

Proof Sketch

Let $X = 12^2 (\prod_{i=1}^r Q_i)^2$. Assume there is no prime missing from [2, X] besides Q_1, \ldots, Q_r . Let p be the prime in [2, X] that is last to appear in the sequence $\{q_i\}$. Let n be such that $q_n = p$. Then $1 + q_1 \ldots q_{n-1} = Q_1^{e_1} \ldots Q_r^{e_r} p^e$.

Let d be the smallest number satisfying the following conditions:

(i)
$$d \equiv 1 \pmod{4}$$
,

(ii)
$$d \equiv -1 \pmod{Q_1 \dots Q_r}$$

- (iii) d and -1 are either both squares mod p or both non-squares mod p.
 - Using the Chinese Remainder Theorem and the bound on H(p) yields that $d \le X$.
 - Given the conditions on *d* and using that *d* ≤ *X* shows that *d* is both a square and a non-square mod

 $1 + q_1 q_2 \dots q_{n-1}$. Contradiction!

Thank you!

Enrique Treviño The primes that Euclid forgot

ヘロト 人間 とくほとくほとう