
FINDING THE FOUR SQUARES IN LAGRANGE’S THEOREM

For Jeff Shallit on his 60th birthday

Paul Pollack1

Department of Mathematics, University of Georgia, Athens, GA 30602, USA
pollack@uga.edu

Enrique Treviño
Department of Mathematics and Computer Science, Lake Forest College, Lake

Forest, IL 60045, USA
trevino@lakeforest.edu

Received: , Revised: , Accepted: , Published:

Abstract

In 1986, Rabin and Shallit presented three randomized algorithms to compute, given
a positive integer n, integers X,Y, Z,W with X2 + Y 2 + Z2 +W 2 = n. The fastest
of the three has expected runtime O((log n)2), but this runtime analysis assumes the
truth of the Extended Riemann Hypothesis. (Here we measure runtime not by bit
operations, but by the number of “basic operations” one must carry out on numbers
of size / n.) The other two algorithms admit slightly worse runtime estimates but
are unconditional, in the sense that no unproved hypotheses are used in the proof of
correctness or the running-time analysis. In this paper we explain how to modify
their algorithms to do slightly better. We give two algorithms for this problem with
expected runtime O((log n)2(log log n)−1); the first is easily described but depends
on ERH, while the latter is unconditional but slightly involved.

1. Introduction

A fundamental result in number theory, claimed by Bachet in 1621 and proved by

Lagrange in 1770 [10], is that every positive integer n can be written as a sum of

four squares, i.e., expressed in the form X2 + Y 2 +Z2 +W 2 for integers X,Y, Z,W .

In this article, we consider the computational problem of finding X,Y, Z,W given n.

1Research of the first-named author is supported by NSF award DMS-1402268.

INTEGERS: 18 (2018) 2

As far as we are aware, Rabin and Shallit were the first authors to describe a

provably efficient algorithm for this problem, in 1986 [18]. Their article presents

three randomized algorithms for expressing n as a sum of four squares, with running

time complexity O((lg n)2), O((lg n)2 lg lg n), and O((lg n)2(lg lg n)2).2 Here our

convention for complexity estimates follows [18], so that complexity counts not bit

operations but arithmetic operations on numbers of size nO(1), where an “arithmetic

operation” means computing n±m,n ·m, bn/mc, or the least nonnegative remainder

when n is divided by m, denoted here n mod m.3

The fastest of the three algorithms alluded to above comes with an important caveat:

it depends on the Extended Riemann Hypothesis (meaning the Riemann Hypothesis

for Dirichlet L-functions). Without ERH, it is not guaranteed to terminate, although

when it does terminate, its output is correct. The two slightly slower algorithms are

unconditional.

In this paper, we present two randomized algorithms for the four-squares problem,

each of which is slightly faster than the fastest of the algorithms in [18]. Our

two randomized algorithms have complexity O((lg n)2(lg lg n)−1). The first, simpler

algorithm depends on ERH, while the second is more complicated, but is independent

of any unproved hypotheses. While the core ideas of the algorithms are borrowed

from [18], we are able to shave off double-logarithmic factors by paying more attention

to the effect of the small prime divisors of n on the magnitude of functions like

ϕ(n)/n.

2. Preliminaries on the Gaussian integers and integral quaternions

Our argument depends crucially on convenient arithmetic properties possessed by

two particular “rings of integers”. The first of these rings is the Gaussian integers

Z[i] := {a+ bi : a, b ∈ Z} ⊂ C. The second is possibly less familiar. Recall that the

ring of real quaternions is the (non-commutative!) R-algebra with R-basis 1, i, j, k

and multiplication determined by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,

and ki = −ik = j. We work in the subring H of (Hurwitz) integral quaternions,

defined by

H :=
{1

2
(a+ bi+ cj + dk) : a, b, c, d ∈ Z, a ≡ b ≡ c ≡ d (mod 2)

}
.

In this section we quickly review the facts we need about Z[i] and H. Proofs of the

results we will assume about Z[i] can be found in introductory texts on abstract

2We write lgn for the number of binary digits in n; e.g., lg 0 = lg 1 = 1, while lg 1957 = 11.
3For the reader who prefers to count bit operations, it is safe to multiply all of our final

complexity estimates by M(lgn), where M(n) is the complexity of multiplying two numbers with
n bits.

INTEGERS: 18 (2018) 3

algebra (see, e.g., [4, Chapter 8]); for H, section 3 of [18] may be consulted.

In both Z[i] and H, an important role is played by the norm of an element. If

α = a + bi ∈ Z[i], its conjugate is defined as a − bi. Similarly, the conjugate of

a+ bi+ cj + dk ∈ H is defined as a− bi− cj − dk. For α in either system, we define

the norm by Nα = αᾱ. Concretely, if α = a+ bi ∈ Z[i], then Nα = a2 + b2, and if

α = a+ bi+ cj + dk ∈ H, then Nα = a2 + b2 + c2 + d2. In both systems, Nα takes

values in the nonnegative integers, and Nα = 0 if and only if α = 0. A fundamental

fact is that the norm is multiplicative: for all α, β, we have N(αβ) = Nα ·Nβ.

It is immediate that n is a sum of two squares if and only if n = Nα for some

α ∈ Z[i]. The corresponding fact holds for sums of four squares relative to H: n is a

sum of four squares if and only if n = Nα for some α ∈ H. In this latter statement,

the “only if” direction is clear, but the “if” direction perhaps less so, since H contains

elements of the form α = 1
2 (a+ bi+ cj + dk) with a, b, c, d odd. However, every such

α can be multiplied by an ε ∈ H of norm 1 in such a way that the product εα has

integer components; indeed, if we choose εa, εb, εc, εd ∈ {±1} so that

εa ≡ a, εb ≡ −b, εc ≡ −c, εd ≡ −d (mod 4),

then ε = 1
2 (εa + εbi+ εcj+ εdk) has the required property. Since the norm of α is the

same as the norm of εα, every norm of an element of H is the norm of a quaternion

with integral components, and so is a sum of four squares.

Both Z[i] and H possess division algorithms. Specifically, if α, β ∈ Z[i] and β 6= 0,

then there are γ, δ ∈ Z[i] with

α = βγ + δ, Nδ ≤ 1

2
Nβ.

The same statement holds with H replacing Z[i]. In the setting of H, one could also

consider dividing α by β “on the other side”, and the analogous result holds; there

are γ, δ ∈ H with

α = γβ + δ, Nδ ≤ 1

2
Nβ.

The theory of the Euclidean algorithm now implies that every ideal of Z[i] is principal,

as is every right-ideal and left-ideal of H.4

The principality of ideals implies the existence of gcds. Specifically, if α, β ∈ Z[i],

every generator of the ideal (α, β) is a gcd. Similarly, in H, every generator of the

left-ideal generated by α, β is a greatest common right-divisor (gcrd)5 of α, β, and

every generator of the corresponding right-ideal is a greatest common left-divisor

4For us, a right-ideal is an additive subgroup that absorbs multiplication on the right. Note
that in Z[i], the collections of left-ideals and right-ideals coincide, since Z[i] is commutative.

5We say that γ is a right-divisor of θ if there is a δ such that θ = δγ. Left-divisors are defined
analogously.

INTEGERS: 18 (2018) 4

(gcld) of α, β. The gcd is unique only up to multiplication by a unit (multiplication

on the left in the case of a gcrd, and on the right in the case of a gcld). In both

systems, the units are precisely the elements of norm 1; these are ±1,±i in Z[i] and

±1, ± i, ± j, ± k, 1

2
(±1± i± j ± k)

in H.

Division is easy from a computational standpoint. Specifically, if α, β are given with

Nα,Nβ having O(lg n) bits, one can determine γ, δ in O(1) arithmetic operations on

integers having O(lg n) bits.6 Now following the Euclidean algorithm, one determines

a gcd (or gcrd/gcld in the case of H) in O(lg n) arithmetic operations.

We will make essential use of the following two propositions, which tell us that certain

gcd (resp., gcrd) computations yield two-square (resp., four-square) representations.

Lemma 1. Let n be an odd positive integer. If n | N(a+ bi), where gcd(a, b) = 1,

then every gcd of n and a+ bi has norm n.

Lemma 2. Let n be an odd positive integer. If n | N(a + bi + cj + dk), where

gcd(a, b, c, d) = 1, then every gcrd of n and a+ bi+ cj + dk has norm n.

We prove only Lemma 2. The proof of Lemma 1 is similar but simpler (since Z[i] is

commutative).

Proof sketch of Lemma 2. Let α be a gcrd of n and a + bi + cj + dk, so that α

generates the left ideal A := H · n + H · (a + bi + cj + dk). Let Ā = {κ̄ : κ ∈ A}.
Recalling that conjugation is an antiautomorphism of H (meaning that αβ = β · α),

we see that Ā = n · H + (a − bi − cj − dk) · H and Ā is generated as a right ideal

by ᾱ. Consider the product AĀ, by which we mean {µν : µ ∈ A, ν ∈ Ā}. Since A

consists of the left-multiples of α and Ā consists of the right-multiples of ᾱ, one

finds that AĀ is the two-sided ideal consisting of all multiples of Nα. (The term

“multiples” is unambiguous here, since Z lies in the center of H.) On the other hand,

AĀ = {(βn+ γ(a+ bi+ cj + dk))(nδ + (a− bi− cj − dk)ε) : β, γ, δ, ε ∈ H}.

By a direct calculation,

(βn+ γ(a+ bi+ cj + dk))(nδ + (a− bi− cj − dk)ε)

= n(βδn+ β(a− bi− cj − dk)ε+ γ(a+ bi+ cj + dk)δ+
N(a+ bi+ cj + dk)

n
γε).

We see from this that n divides every element of AĀ. Hence, n−1AĀ is also a

two-sided ideal of H. Taking β = δ = 1 and ε = γ = 0, we see that n−1AĀ contains

6See [18, §3] for the details of how to efficiently implement division in Z[i] and H.

INTEGERS: 18 (2018) 5

n. Taking β = 1, δ = 0, and γ = 0 shows that n−1AĀ contains

(a− bi− cj − dk)ε

for all ε. Similarly, taking δ = 1, β = 0 and ε = 0, we find that n−1AĀ contains

γ(a+ bi+ cj + dk)

for all γ. Since n−1AĀ is an ideal, these last two results together imply that

(a− bi− cj − dk)ε+ (a− bi− cj − dk)ε ∈ n−1AĀ

for all choices of ε. Now letting ε = 1, i, j, k, we find that 2a, 2b, 2c, 2d ∈ n−1AĀ.

By assumption, a, b, c, d generate the unit ideal of Z, and so n−1AĀ contains 2.

Since n−1AĀ also contains n, and n is odd, n−1AĀ is all of H. Hence, AĀ consists

precisely of the multiples of n. Since AĀ also consists precisely of the multiples of

Nα, and both Nα and n are positive integers, we must have n = Nα.

We suspect Lemmas 1 and 2 are classical. However, they are perhaps not as well-

known as they could be. As some evidence, Lemma 2 implies that the repeated

splitting procedure described on pp. S246, S251 of [18] is never necessary.

3. An ERH-conditional algorithm

Our ERH-conditional algorithm is a riff on the ERH-conditional algorithm described

in [18], which was discovered by Rabin in 1977 (see the interview [20]). Here is a

sketch of that algorithm. First, we can assume that the number n we are trying to

represent is odd. To see this, write n = 2en′ with n′ odd. If X ′2+Y ′2+Z ′2+W ′2 = n′,

then X2 + Y 2 + Z2 +W 2 = n for X,Y, Z,W defined by

(1 + i)e(X ′ + Y ′i+ Z ′j +W ′k) = X + Y i+ Zj +Wk.

The computation of e here, as well as the computation of X,Y, Z,W from e and

X ′, Y ′, Z ′,W ′, requires only O(lg n) steps.

To represent an odd n as a sum of four squares, we look for a prime p ≡ −1 (mod n),

p ≡ 1 (mod 4) smaller than (2n)5. Since p ≡ 1 (mod 4), we can write p = A2 +B2.

Suppose we have computed A,B. Then

n | p+ 1 = A2 +B2 + 1 = N(A+Bi+ j).

By Lemma 2, we recover a four squares representation of n by computing gcrd(n,A+

Bi+ j), where we assume the gcrd has been multiplied by a unit in H to have integer

INTEGERS: 18 (2018) 6

components. Without the restriction that p < (2n)5, the existence of such a prime p

follows by Dirichlet’s theorem on primes in arithmetic progressions. So we see that

these ideas lead immediately to a quick proof of Lagrange’s theorem (but one that

assumes the theorem of Dirichlet, proved nearly 70 years later).

Rabin realized that (under ERH) one can quickly find the needed prime p by making

randomized choices. Indeed, under ERH, among all integers up to (2n)5 that are

≡ −1 (mod n) and ≡ 1 (mod 4), the proportion of primes is � n
ϕ(n) ·

1
lgn ≥

1
lgn .

So we expect to hit a prime p in O(lg n) trials.

We now present our modified algorithm for representing an odd n as a sum of four

squares. The new idea is, rather than simply using the trivial lower bound of 1 on
n

ϕ(n) , to exploit that n
ϕ(n) is large when n is divisible by many small primes; this

allows us to reduce the expected number of trials to O(lg n/ lg lg n). We assume

that n > 20; for n ≤ 20 it is trivial to find a four-squares representation.

(1) [Precomputation] Determine the primes not exceeding log n and compute their

product M .

(2) [Random trials] Choose an odd number k < n5 at random, and let

p = Mnk − 1.

(Notice that p ≡ 1 (mod 4), since 2 ‖ M and n, k are odd.) For a randomly

chosen u ∈ [1, p−1], compute s = u(p−1)/4 mod p and test if s2 ≡ −1 (mod p).

If so, continue to the next step. Otherwise, restart this step.

(3) [Denouement] Compute A+Bi := gcd(s+ i, p). Then compute gcrd(A+Bi+

j, n), normalized to have integer components. Write this gcrd as X + Y i +

Zj +Wk, and output the representation n = X2 + Y 2 + Z2 +W 2.

We now explain why the algorithm is correct and why the expected number of

required arithmetic operations is O((lg n)2(lg lg n)−1).

First, we address the correctness of the output. At the conclusion of (2), p | N(s+ i),

and so Lemma 1 gives that A2 +B2 = p. Since p+ 1 = Mnk, we have

n | p+ 1 = A2 +B2 + 1 = N(A+Bi+ j).

Now Lemma 2 shows that every gcrd of n and A+Bi+j has norm n. This completes

the correctness proof.

We remark that although we used the letter p, it is not necessary to assume here

that p is prime. (But it is unlikely we would have found s2 ≡ −1 (mod p) unless p

were prime.)

Now we address the complexity. Each integer in [2, log n] can be tested for primality

in O((lg n)1/2) operations (by trial division), and so the complete list of primes in

INTEGERS: 18 (2018) 7

[2, log n] can be found with O((lg n)3/2) operations.7 We can then compute M using

O(lg n) multiplications. (By the prime number theorem, all of the partial products

arising in the computation of M are of size nO(1).) Hence, the precomputation step

can be carried out with O((lg n)3/2) arithmetic operations.

In order to continue, we must recall two consequences of the ERH.

(a) For each real x and each pair of integers a, q with q > 0, let π(x; q, a) denote

the count of primes p ≤ x with p ≡ a (mod q). If a, q are relatively prime and

x ≥ 2, then ∣∣∣∣π(x; q, a)− 1

ϕ(q)

∫ x

2

dt

log t

∣∣∣∣ ≤ √x(log x+ 2 log q).

(See Oesterlé [12] for a more general result.)

(b) (Bach and Sorenson [2]) For q ≥ 2 and a coprime to q, the least prime p ≡ a
(mod q) satisfies p ≤ 2(q log q)2.

We will use the following crude consequence of (a) and (b): For q ≥ 2 and x ≥ 2q3,

π(x; q, a)� x

ϕ(q) log x
.

(We leave the task of deducing this statement from (a) and (b) to the reader.)

We now apply this lower bound on π(x; q, a) to estimate the number of primes p ≡ −1

(mod Mn), p ≡ 1 (mod 4) not exceeding Mn6. The two congruence conditions place

p in a coprime residue class modulo 2Mn. It is known (see [17]) that∏
` prime
`≤T

` ≤ e1.02T (1)

for all T > 0. Taking T = log n yields M ≤ n1.02. Using this, it is straightforward

to check that Mn6 ≥ 2(2Mn)3 for n ≥ 18. So under ERH, the number of primes p

as above is

� Mn6

ϕ(2Mn) log(Mn6)
� n5

log n
· Mn

ϕ(Mn)
=

n5

log n

∏
`|Mn

(1− 1/`)−1 � n5
log log n

log n
,

using in the last step that Mn is divisible by all primes up to log n and that the

sum of the reciprocals of those primes is log log log n+O(1). Thus, if an odd k is

selected at random from the positive integers ≤ n5, then p = Mnk − 1 is prime

with probability � log log n/ log n. Moreover, when p is prime, half of the values of

7It would be more efficient to use the sieve of Eratosthenes here, but this part of the algorithm
is not the bottleneck.

INTEGERS: 18 (2018) 8

u ∈ [1, p− 1] (namely, the quadratic nonresidues) are such that u(p−1)/4 is a square

root of −1 mod p.

It follows that each trial step has probability � log log n/ log n of success, so that

the expected number of trials is O(log n/ log log n). The most expensive step in an

individual trial is the computation of u(p−1)/4 mod p; by repeated squaring, this can

be done with O(lg p) = O(lg n) operations. Thus, the expected number of operations

required in step (2) is O((lg n)2(lg lg n)−1), which is acceptable. (We have used

here that log and lg have the same order of magnitude in the range of n we are

considering, as do log log and lg lg.)

Finally, (3) requires O(lg n) arithmetic operations, using the Euclidean algorithm

to compute the gcds. Putting everything together, we see that the expected total

number of arithmetic operations required by the algorithm is O((lg n)2(lg lg n)−1).

4. An unconditional algorithm

In the ERH-conditional algorithm, we find a prime p from the progression 1 modulo

4 that is also congruent to −1 modulo n. Writing p = x2 + y2 gives a solution to n |
x2 +y2 +1, allowing us to extract a four-square representation from Lemma 2. In our

unconditional algorithm, we instead search for x, y for which (−(x2 +y2)) mod n can

be quickly expressed as a sum of two squares, say z2 +w2. Then n | x2 +y2 +z2 +w2

and a four-square representation can again be obtained from Lemma 2. (Of course,

we need n odd and gcd(x, y, z, w) = 1 to apply Lemma 2; we will arrange below for

these conditions to hold.)

We began the previous section by mentioning that we can easily reduce to considering

only odd n. In fact, for an acceptable computational cost, we can reduce to the

more special case of odd n having no prime factors ` ≤ log n with ` ≡ 1 (mod 4).

As in the previous section, we assume that n > 20, so that log n > 3.

To see how this reduction goes, first note that we can flag each number in [1, log n]

as prime or composite using O((lg n)3/2) operations. Since our goal is to produce

an algorithm requiring O((lg n)2(lg lg n)−1) operations, such a computation is ac-

ceptable. In another O(lg n) operations, we can compute X2 + Y 2 for all pairs X,Y

with 0 ≤ X,Y ≤ (log n)1/2. We record, for ` = 2 and for the primes ` ≤ log n with

` ≡ 1 (mod 4), integers X`, Y` with

` = X2
` + Y 2

` .

INTEGERS: 18 (2018) 9

Writing “` = �+�” for the condition that ` = 2 or ` ≡ 1 (mod 4), we factor

n =

 ∏
`≤logn
`=�+�

`e`

n′,

where n′ is odd and coprime to all primes ` ≡ 1 (mod 4), ` ≤ log n. This can be

done with O(lg n) operations: For each `, we repeatedly divide n by ` until the

division leaves a remainder. For a given `, this requires e` + 1 divisions, and so the

total number of divisions required is∑
`≤logn
`=�+�

(e` + 1) =
∑

`≤logn
`=�+�

e` +
∑

`≤logn
`=�+�

1 ≤ log n

log 2
+ log n,

which is O(lg n). If X ′2 + Y ′2 + Z ′2 + W ′2 = n′, then X2 + Y 2 + Z2 + W 2 = n,

where

(X ′ + Y ′i+ Z ′j +W ′k)
∏

`≤logn
`=�+�

(X` + Y`i)
e` = X + Y i+ Zj +Wk.

Computing X,Y, Z,W , given the e` and the numbers X ′, Y ′, Z ′,W ′, requires another

O(lg n) operations. Collecting the estimates, we may perform this reduction at the

cost of O((lg n)3/2) steps.

Before describing our unconditional algorithm, which is a variant of the method

described in §3 of [18], we make some observations. From now on, n > 20, n is odd,

and n has no prime factors ` ≤ log n from the arithmetic progression 1 mod 4. Let

P =
∏

`≤logn
`≡3 (mod 4)

`,

and let

N = n · P/ gcd(P, n).

We have already computed the primes up to log n, and so computing P and N

requires only O(lg n) operations. Note that n ≤ N ≤ nO(1), where the second

inequality comes from the prime number theorem (or (1)).

The following lemma is a special case of Lemma 3.2 on p. S247 of [18], and was

seemingly first proved by Hermite in 1854 [8].

Lemma 3. Let N be an odd positive integer. For every a coprime to N , the number

of solutions x, y mod N to x2 + y2 ≡ a (mod N) is precisely

N
∏
`|N

(
1−

(
−1

`

)
1

`

)
,

INTEGERS: 18 (2018) 10

where
(−1

`

)
is the Legendre symbol.

From the primes ` ≤ log n, our N is divisible by none that are congruent to 1

(mod 4) and by all that are congruent to 3 (mod 4). Writing n′ for the largest

divisor of n supported on primes exceeding log n, we deduce that

∏
`|N

(
1−

(
−1

`

)
1

`

)
≥

∏
`≤logn

`≡3 (mod 4)

(
1 +

1

`

) ∏
`|N

`>logn

(
1− 1

`

)

� (log log n)1/2
∏
`|N

`>logn

(
1− 1

`

)
≥ (log log n)1/2 ·

(
1− 1

log n

)ω(n′)

,

where, as usual, ω(·) counts the number of distinct prime divisors. (In moving from

the first to the second line, we used that the sum of the reciprocals of the primes

congruent to 3 (mod 4) up to T , for T ≥ 2, is 1
2 log log T +O(1). See, e.g., [11, pp.

449–450]. We also used that N and n have the same prime divisors exceeding log n.)

Notice that (log n)ω(n′) ≤ n′, so that ω(n′) ≤ log n′/ log log n < log n. Consequently,(
1− 1

log n

)ω(n′)

≥
(

1− 1

log n

)logn

≥
(

1− 1

3

)3

>
1

4
.

(We used here that log n ≥ 3 and that (1− 1/T)T is increasing for T ≥ 3.) Thus,

each congruence x2 + y2 ≡ a (mod N), with gcd(a,N) = 1, has � N(log log n)1/2

solutions (x, y) mod N .

The algorithm begins by selecting x, y at random from [1, N] and computing

r := (−(x2 + y2)) mod N.

We show below (Lemma 4) that there are� N(log log n)1/2/ logN integers in [1, N]

that have the form r1p, where r1 is a product of primes ` ≤ log n with ` ≡ 1 (mod 4),

and p > log n is a prime congruent to 1 modulo 4 not dividing N . All of these

numbers r1p are coprime to N . Using the concluding result of the last paragraph,

we see that the number of choices for x, y where r lands on one of the numbers r1p is

� N
(log log n)1/2

logN
·N(log log n)1/2 � N2 log log n

log n
.

Thus, with x, y chosen at random from [1, N], we expect to have r = r1p within

O(log n/ log log n) trials.

Having located r = r1p, we note that it is easy to compute a two-squares representa-

tion of r1:

u2 + v2 = r1, where u+ vi :=
∏

`v`‖r1

(X` + Y`i)
v` . (2)

INTEGERS: 18 (2018) 11

Determining the exponents v` and computing u, v requires only O(lg n) operations,

by arguments similar to those appearing at the start of this section.

Suppose we have written p = U2 + V 2, and let z + wi = (u+ vi)(U + V i), so that

z2 + w2 = r1p. Then

−(x2 + y2) ≡ r = r1p = z2 + w2 (mod N),

so that

n | N | x2 + y2 + z2 + w2. (3)

We show below (see Lemma 5) that gcd(x, y, z, w) = 1 — in fact, that gcd(z, w) = 1

— so that by Lemma 2 a four squares representation of n is obtained by computing

gcrd(n, x+ yi+ zj + wk) (normalized to have integer components).

As it stands, the above description is incomplete. We have glossed over how we

determine whether r = r1p for some r1, p as above, and how to write p as a sum of

two squares. To circumvent these issues, we amend the initial (trial) steps of the

algorithm to the following, denoted (T):

(T) For a random choice of x, y ∈ [1, N], compute r := (−(x2 + y2)) mod N .

Immediately choose another x, y unless r ≡ 1 (mod 4) and gcd(r,N) = 1.

Once an r satisfying these conditions is found, determine r1 by

r = r1p, where r1 =
∏

`≤logn
`≡ 1 (mod 4)

`v`‖r

`v` . (4)

(Finding r1 requires only O(lg n) operations.) If p = 1, we stop and declare

victory.

Now assume that p > 1. In that case, we choose u ∈ [1, p− 1] at random and

test whether s := u(p−1)/4 mod p is a square root of −1 mod p. If not, we

restart (T) with another random choice of x, y.

When p is a prime, s is a square root of −1 half the time. Thus (from Lemma 4)

the random trial (T) succeeds with probability � log log n/ log n. So we expect to

do only O(log n/ log log n) trials before (T) succeeds. Each trial requires O(lg n)

operations, and so we expect (T) to require O((lg n)2/ lg lg n) operations.

When (T) succeeds, we know a pair x, y with

−(x2 + y2) ≡ r1p,

we have the factorization of r1 in the form (4), and either p = 1 or we have a square

root s of −1 modulo p. Compute the u, v in (2), so u2 + v2 = r1. If p = 1, put U = 1

and V = 0; otherwise, calculate gcd(p, s+ i) = U + V i. In either case, p = U2 + V 2.

INTEGERS: 18 (2018) 12

With z + wi = (u + vi)(U + V i), we have, as in (3), n | x2 + y2 + z2 + w2. By

Lemma 5 below, gcd(z, w) = 1, and so, by Lemma 2, we can extract a four-squares

representation of n by computing gcrd(n, x+ yi+ zj +wk). These concluding steps

require O(lg n) operations in total, and so the expected number of steps in the entire

(amended) algorithm is O((lg n)2/ lg lg n), as desired.

We have two outstanding debts: proving that there are indeed many values of r1p,

and proving that gcd(z, w) = 1.

Lemma 4. Let n and N be odd integers with 20 < n ≤ N . The number of positive

integers R ≤ N which admit a decomposition R = r1p where r1 is a product of

primes ` ≤ log n, ` ≡ 1 (mod 4), and p > log n is a prime congruent to 1 (mod 4)

with p - N , is

� N

√
log log n

logN
.

Proof. We first prove the lemma when n is sufficiently large. For each r1 that can

be written as a product of primes ` ≤ log n, ` ≡ 1 (mod 4), we count the number of

corresponding choices for p. For a given r1, the number of choices for p is at least

π(N/r1; 4, 1)− π(log n; 4, 1)− ω(N).

We obtain a lower bound by summing this expression over r1 ≤ N1/2. By the prime

number theorem for arithmetic progressions, for all large N and all r1 ≤ N1/2,

π(N/r1; 4, 1)� N/r1
log(N/r1)

� N

r1 logN
.

This last quantity is � N1/2

logN . On the other hand,

π(log n; 4, 1) ≤ log n ≤ logN and ω(N) ≤ logN/ log 3 < logN.

Since logN = o(N1/2/ logN), as N →∞, we see that the number of p corresponding

to a given r1 is � N/(r1 logN), uniformly for r1 ≤ N1/2 (once n, and hence N , is

large). Thus, the total number of values of r = r1p we produce this way is

� N

logN

∑
r1

1

r1
−

∑
r1>N1/2

1

r1

 ,

where the sums on r1 are over numbers composed of primes ` ≤ log n, ` ≡ 1 (mod 4).

Now ∑
r1

1

r1
=

∏
`≤logn

`≡1 (mod 4)

(
1 +

1

`
+

1

`2
+ · · ·

)
�
√

log log n.

INTEGERS: 18 (2018) 13

(We use here that the sum of the reciprocals of the primes congruent to 1 (mod 4)

up to T , for T ≥ 2, is 1
2 log log T +O(1). See [11, pp. 449–450].) To handle the sum

on r1 > N1/2, note that every such r1 is (2 log r1)-smooth (since log n < 2 log r1).

But the number of integers t ∈ (1, T] that are (2 log t)-smooth is T o(1), as T →∞.

(This can be deduced from [21, Theorem 5.2, p. 513].) It now follows by partial

summation that the sum on r1 > N1/2 appearing above is O(1). Assembling these

estimates yields the lemma for all sufficiently large n, say n ≥ n0.

It is clear that the lemma also holds when 20 < n < n0 (adjusting the implied

constant appropriately), provided that there are � N/ logN values of R for all

choices of n,N . To obtain this lower bound, we consider the contribution from

values of R with r1 = 1. This includes all numbers R = p with p ∈ (N/3, 2N/3]

and p ≡ 1 (mod 4). Indeed, since N ≥ n > 20, we have p > N/3 > logN ≥ log n.

And it cannot be that p | N : since N/p ∈ [3/2, 3), for p to divide N we would need

N = 2p, contradicting that N is odd. The proof is completed by recalling that

the number of p ∈ (N/3, 2N/3] with p ≡ 1 (mod 4) is � N/ logN . Indeed, it was

proved by Erdős [6] that the number of primes congruent to 1 (mod 4) in (T, 2T] is

� T/ log T for all T ≥ 13
2 .

Lemma 5. gcd(z, w) = 1.

Proof. In our algorithm, z + wi = (u+ vi)(U + V i), where u+ vi is a product of

certain of the numbers X` + Y`i , and either U + V i = 1 (in the case p = 1) or

U + V i = gcd(p, s + i) for some square root s of −1 mod p. Note that p is not

necessarily prime, but we do know that p has no prime factors up to log n. When

p > 1, the fact that −1 has a square root mod p implies that every prime factor of p

belongs to the residue class 1 modulo 4.

Suppose now that the prime q divides z, w. Then q | z + wi in Z[i]. The Gaussian

primes X` + Y`i, as well as all the Gaussian primes dividing U + V i, lie above

primes 1 modulo 4. Hence, q ≡ 1 (mod 4), and q = ππ̄ with π and π̄ nonassociated

Gaussian primes. Then π and π̄ both divide z + wi. By construction, u + vi is

divisible by at most one of π and π̄. (For each `, at most one of the two primes

above ` divides u+ vi, namely X` + Y`i.) So either π and π̄ both divide U + V i or

one of π, π̄ divides u + vi while the other divides U + V i. If U + V i = 1, each of

these scenarios is absurd, so we may assume U + V i = gcd(p, s+ i) with s a square

root of −1 mod p.

If π and π̄ both divide U + V i, then q = ππ̄ | U + V i = gcd(p, s + i). But then

q | s+ i, which is absurd. If one of π, π̄ divides u+ vi while the other divides U +V i,

then N(u + vi) and N(U + V i) are both divisible by q = N(π) = N(π̄). Since

N(u+ vi) is a product of primes not exceeding log n, it must be that q ≤ log n. But

N(U+V i) = p has no prime factors in [2, log n], so again we have a contradiction.

INTEGERS: 18 (2018) 14

5. Concluding remarks

It would, of course, be desirable to possess a deterministic polynomial-time algorithm

for computing a representation of n as a sum of four squares. Such an algorithm is

available when n is prime (a result of Bumby [3]) and so, via quaternion multiplication,

whenever we are given the prime factorization of n.

It seems difficult to prove that a representation of n can always be found in deter-

ministic polynomial time (without prior information on the factorization of n). This

would follow from the conjecture of Heath-Brown [7] that the least prime congruent

to a (mod q), when gcd(a, q) = 1, is � q(lg q)2. For reasons already discussed, we

can restrict attention to odd n. For k = 1, 3, 5, 7, . . . , use the AKS test [1] to decide

whether p = 2nk − 1 is prime. Assuming the truth of Heath-Brown’s conjecture

(with q = 4n), we are certain to hit upon a prime p within O((lg n)2) steps. Use

Schoof’s algorithm [19] to compute the number of Fp-points on the elliptic curve

y2 = x3 − x. If this is N , let a = 1
2 (p + 1 − N). Then a ∈ Z and p = a2 + b2 for

some b (see, e.g., [9, Theorem 5, p. 307]), whose value is easily found from p, a. We

have that n | 2nk = p+ 1 = a2 + b2 + 1, and we find a four-squares representation

of n by computing gcrd(n, a+ bi+ j).

Unconditionally, we can show that a positive proportion of numbers can be written

as a sum of four squares in deterministic polynomial time. Certainly all integers

of the form 4k + p, where p is a prime congruent to 1 (mod 4), have this property.

(In fact, these numbers can be quickly expressed as a sum of three squares!) That

these numbers comprise a set of positive lower density can be proved by an easy

modification of a method of Romanov [16].

Under ERH, we can do better: Almost all natural numbers (by which we mean

asymptotically 100%) can be expressed as a sum of four squares in deterministic

polynomial time. Assuming ERH, Prachar showed that for a certain absolute

constant C, almost all n admit a representation in the form

n = p+m2, where 0 ≤ m < (log n)C .

(This is a special case of [14, Satz 1]. The constant C could be computed from the

proof but is not given explicitly in [14].) When n is congruent to 2 (mod 4) and not

of the form m2 +2, every such representation of n has p ≡ 1 (mod 4). It follows that

almost all n ≡ 2 (mod 4) can be expressed as a sum of four squares in deterministic

polynomial time. Elementary arguments now suffice to transition from almost all

n ≡ 2 (mod 4) to almost all positive integers n (cf. the discussion in the middle of

p. S244 of [18]).

We conclude with a word about sums of higher powers. Confirming a 1770 conjecture

of Waring, Hilbert showed in 1909 that for each fixed k ≥ 2, every positive integer

INTEGERS: 18 (2018) 15

can be written as a sum of Ok(1) nonnegative kth powers. Hilbert’s proof goes by

reducing the case of arbitrary k to Lagrange’s four-square theorem (corresponding to

k = 2). It seems interesting to note that this reduction can be made computationally

effective: for every fixed k ≥ 2, whenever one has an algorithm that runs in

expected (respectively, deterministic) polynomial time for representing an arbitrary

positive integer as a sum of four squares, one gets an algorithm running in expected

(respectively, deterministic) polynomial time for representing an arbitrary positive

integer as a sum of Ok(1) nonnegative kth powers. This is clear, for instance, from

the simplified solution to Waring’s problem described by Dress in [5]. To make the

algorithm explicit, one needs an explicit form of the “fundamental Hilbert identities”.

The existence of these identities is proved nonconstructively in [5] (following Ellison),

but a constructive proof, due to Hausdorff and Stridsberg, can be given by means of

the Hermite polynomials. Details can be found in G. J. Rieger’s dissertation [15].

See also [13] for an exposition of the ideas of Rieger and Dress.8

Acknowledgements

We thank the referees for detailed comments on the manuscript that led to improve-

ments in the readability.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160

(2004), 781–793.

[2] E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Math.

Comp. 65 (1996), 1717–1735.

[3] R. T. Bumby, Sums of four squares, Number Theory (New York, 1991–1995),

Springer, New York, 1996, pp. 1–8.

[4] D. S. Dummit and R. M. Foote, Abstract Algebra, third ed., John Wiley & Sons,

Inc., Hoboken, NJ, 2004.

[5] F. Dress, Méthodes élémentaires dans le problème de Waring pour les entiers,

Université de Provence, Marseille, 1971, Journées Arithmétiques Françaises,

Mai 1971.

[6] P. Erdős, Über die Primzahlen gewisser arithmetischer Reihen, Math. Z. 39

(1935), 473–491.

8Using [13], the last occurrence of Ok(1) can be replaced with (2k + 1)2000k
5
.

INTEGERS: 18 (2018) 16

[7] D. R. Heath-Brown, Almost-primes in arithmetic progressions and short inter-

vals, Math. Proc. Cambridge Philos. Soc. 83 (1978), 357–375.

[8] C. Hermite, Sur la théorie des formes quadratiques. Second mémoire, J. Reine

Angew. Math. 47 (1854), 343–368.

[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,

second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York,

1990.

[10] J.-L. Lagrange, Démonstration d’un théoréme d’arithmétique, Nouv. Mém.

Acad. Roy. Sc. de Berlin (1770), 123–133. Also in Oeuvres de Lagrange 3 (1869),

pp. 189–201.

[11] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände,

second edition, Chelsea Publishing Co., New York, 1953.

[12] J. Oesterlé, Versions effectives du théorème de Chebotarev sous l’hypothèse de

Riemann généralisée, Astérisque 61 (1979), 165–167.

[13] P. Pollack, On Hilbert’s solution of Waring’s problem, Cent. Eur. J. Math. 9

(2011), 294–301.

[14] K. Prachar, Über Zahlen, die sich als Summe einer Primzahl und einer “kleinen”

Potenz darstellen lassen, Monatsh. Math. 68 (1964), 409–420.

[15] G. J. Rieger, Zur Hilbertschen Lösung des Waringschen Problems: Abschätzung

von g(n), Mitt. Math. Sem. Giessen. (1953), no. 44, 35 pages.

[16] N. P. Romanov, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109

(1934), 668–678.

[17] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of

prime numbers, Illinois J. Math. 6 (1962), 64–94.

[18] M. O. Rabin and J. O. Shallit, Randomized algorithms in number theory, Comm.

Pure Appl. Math. 39 (1986), no. S, suppl., S239–S256.

[19] R. Schoof, Elliptic curves over finite fields and the computation of square roots

mod p, Math. Comp. 44 (1985), 483–494.

[20] D. Shasha, An Interview with Michael Rabin, Commun. ACM 53 (2010), no. 2,

37–42.

[21] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, third

ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society,

Providence, RI, 2015.

