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Abstract

Let q1 = 2. Supposing that we have defined qj for all 1 ≤ j ≤ k, let
qk+1 be a prime factor of 1 +

∏k
j=1 qj . As was shown by Euclid over two

thousand years ago, q1, q2, q3, . . . is then an infinite sequence of distinct
primes. The sequence {qi} is not unique, since there is flexibility in the
choice of the prime qk+1 dividing 1 +

∏k
j=1 qj . Mullin suggested studying

the two sequences formed by (1) always taking qk+1 as small as possi-
ble, and (2) always taking qk+1 as large as possible. For each of these
sequences, he asked whether every prime eventually appears. Recently,
Booker showed that the second sequence omits infinitely many primes.
We give a completely elementary proof of Booker’s result, suitable for
presentation in a first course in number theory.

1 Introduction.

The following is one version of Euclid’s proof that there are infinitely many
primes. Start with q1 = 2. Supposing that qj has been defined for 1 ≤ j ≤ k,
continue the sequence by choosing a prime qk+1 for which

qk+1 | 1 +

k∏
j=1

qj . (1)

Then ‘at the end of the day’, the list q1, q2, q3, . . . is an infinite sequence of
distinct prime numbers.

Of course, the sequence {qi} obtained in this way is not unique, since the
relation (1) is often satisfied by several choices of the prime qk+1. Mullin [4]
suggested two natural ways of dispensing with the ambiguity. First, we could
agree that at each step, we always choose the smallest prime qk+1 satisfying (1);
this leads to the sequence (numbered A000945 in the Online Encyclopedia of
Integer Sequences, or OEIS [6])

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . . . (2)

Alternatively, we might always choose the largest possible qk+1, resulting in the
sequence (A000946 in the OEIS)

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, . . . . (3)
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We call (2) and (3) the first and second Euclid–Mullin sequences, respectively.
For each of (2) and (3), Mullin raised the question of whether every prime
eventually appears. Shanks [5] conjectured on probabilistic grounds (bolstered
by computations of Wagstaff; cf. [7]) that every prime is eventually reached
by (2), but essentially nothing about the first Euclid–Mullin sequence has been
rigorously established. The second Euclid–Mullin sequence was investigated by
Cox and van der Poorten [2]. They showed that all of 5, 11, 13, 17, 19, 23,
29, 31, 37, 41, and 47 are missing and conjectured that in fact infinitely many
primes fail to appear in (3). The Cox–van der Poorten conjecture was very
recently confirmed by Booker [1].

Theorem (Booker). The second Euclid–Mullin sequence omits infinitely many
primes.

There are two key ingredients in Booker’s proof. The first is quadratic
reciprocity for the Jacobi symbol, which is a staple of many first courses in
number theory. In addition to this elementary theorem, Booker also makes use
of some fairly intricate results in analytic number theory, specifically work of
Burgess from the 1960s on upper bounds for short character sums.

A simple statement calls out for a simple proof! In this note, we present a
variant of Booker’s proof where all of the analytic number theory is replaced
by very simple-to-prove statements about the distribution of squares and non-
squares modulo a prime. There is a cost for this, certainly; our quantitative
bounds are weaker than what follows from Burgess’s estimates. However, we
believe that given how simple Booker’s theorem is to state, there is some value
in writing out a proof that is accessible to as wide an audience as possible.

Notation

Throughout the paper, we reserve the letter p for a prime variable. We use
(
a
m

)
for the usual Legendre–Jacobi symbol.

2 Preliminaries on the distribution of squares
and nonsquares modulo a prime.

Recall that an integer a not divisible by p is called a quadratic residue modulo
p if the congruence x2 ≡ a (mod p) is solvable and a quadratic nonresidue
otherwise. We let `(�, p) denote the length of the longest run a+1, a+2, . . . , a+`
of consecutive quadratic residues mod p, and we let `(�, p) denote the longest
run of consecutive quadratic nonresidues. If we wish integers congruent to 0
modulo p to be allowed in the run, we will write `′ in place of ` in both cases.

In this section, we show that all of `(�, p), `(�, p), `′(�, p), and `′(�, p)
are smaller than 2

√
p. As a prelude, we prove an upper bound on the smallest

positive quadratic nonresidue modulo p, which we denote by n2(p).

Lemma 1. Let p be an odd prime. Then n2(p) < 1
2 +
√
p.
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Proof. Let n = n2(p). Since p < ndp/ne < p+n, the least nonnegative residue of
ndp/nemodulo p lies in the open interval (0, n). So ndp/ne is a quadratic residue

modulo p. Since n is a quadratic nonresidue, the ratio ndp/ne
n = dp/ne is also a

nonresidue. So by the minimality of n, it must be that 1 + p/n > dp/ne ≥ n.
Hence, (

n− 1

2

)2

< n2 − n + 1 ≤ p, and so n <
1

2
+
√
p.

Lemma 2. Let 1 ≤ n < p be a quadratic nonresidue modulo p. Then

`(�, p) ≤ max{p/n, n− 1}.

Proof. Let ` = `(�, p), and choose a ∈ Z so that all of a + 1, a + 2, . . . , a +
` are quadratic residues modulo p. Multiplying by n, we obtain a sequence
na + n, na + 2n, . . . , na + `n of quadratic nonresidues modulo p, each of which
differs from the previous by n. Suppose now that ` > p/n. In this case, every
quadratic residue modulo p can be considered mod p as being walled inside
one of the intervals (na + jn, na + (j + 1)n) with 1 ≤ j < dp/ne, or inside
(na + dp/nen, na + n + p). Thus, any run of quadratic residues has length
bounded by n − 1. So either ` ≤ p/n or ` ≤ n − 1, exactly as claimed in the
lemma.

We can now establish an upper bound on the length of any sequence of
consecutive squares modulo p.

Proposition 3. If p is an odd prime, then `′(�, p) < 2
√
p.

Proof. We first rule out long runs of squares containing a multiple of p. Suppose
first that −1 is not a square modulo p. Then any such run of squares can be
viewed, modulo p, as a subset of the interval [0, n2(p)), and thus has length at
most n2(p). On the other hand, if −1 is a square modulo p, then such a run can
be viewed as a subset of (−n2(p), n2(p)), and so has length at most 2n2(p)− 1.
Consequently,

`′(�, p) ≤ max{2n2(p)− 1, `(�, p)}.

By Lemma 1, we have 2n2(p)−1 < 2
√
p. Thus, it suffices to show that `(�, p) <

2
√
p. If there is any quadratic nonresidue in the half-open interval ( 1

2

√
p, 2
√
p],

then this bound on `(�, p) follows from Lemma 2. So let us suppose otherwise.
By Lemma 1, n2(p) < 1

2 +
√
p < 2

√
p, and so n2(p) ≤ 1

2

√
p. With n := n2(p),

each of the integers k2n with 1 ≤ k < p is a quadratic nonresidue mod p. If we
pick k as large as possible with

k2n ≤ 1

2

√
p,

then the lack of nonresidues in ( 1
2

√
p, 2
√
p] implies that

(k + 1)2n > 2
√
p.
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Subtracting the first inequality from the second yields (2k+1)n > 3
2

√
p ≥ 3k2n,

and thus 2k + 1 > 3k2. But this inequality is false for each k ≥ 1. This proves
that `(�, p) < 2

√
p and completes the proof of the proposition.

It is easier to rule out long runs of nonsquares mod p.

Proposition 4. For each odd prime p, we have `′(�, p) < 2
√
p.

Proof. Every nonresidue or multiple of p can be considered mod p as being
walled within the interval (j2, (j + 1)2), for some 1 ≤ j < b√pc, or within the
interval (b√pc2, p + 1). The number of integers in an interval of the first kind
is 2j < 2

√
p, while the number of integers in (b√pc2, p + 1) is p − b√pc2 <

p− (
√
p− 1)2 < 2

√
p.

Remarks. Much of this section is adapted from the charming book of Gelfond
and Linnik [3]. Lemma 1 and its proof appear, with trivial changes, as that text’s
Theorem 9.3.1, while the proof of Proposition 4 comes from the discussion at
the bottom of p. 179. The only novelty is our proof of Proposition 3. Gelfond
and Linnik state that result as Theorem 9.3.2, but it seems that their proof is
incomplete.

3 Proof of the main theorem.

Throughout this section, the second Euclid–Mullin sequence is denoted q1, q2,
q3, . . . . The main theorem is contained in the following proposition.

Proposition 5. Let Q1, Q2, . . . , Qr be the smallest r primes omitted from the
second Euclid–Mullin sequence, where r ≥ 0. Then there is another omitted
prime smaller than

122

(
r∏

i=1

Qi

)2

. (4)

Remark. Using the results of Burgess, Booker showed that the exponent 2 in
(4) can be replaced with any real number larger than 1

4
√
e−1 = 0.178734 . . . ,

provided that 122 is also replaced by a possibly larger constant.

Proof. Let X = 122 (
∏r

i=1 Qi)
2
. Let us suppose for the sake of contradiction

that every prime p ≤ X except Q1, . . . , Qr appears in the second Euclid–Mullin
sequence. Let p be the prime in [2, X] that is last to appear in the sequence
{qi}, and say p appears as the nth term qn. Then p is the largest prime dividing
1 + q1 · · · qn−1. Moreover, since each prime smaller than p that is not a Qi is
one of q1, . . . , qn−1, the only other possible prime factors of 1 + q1 · · · qn−1 are
Q1, . . . , Qr. Thus, we must have

1 + q1 · · · qn−1 = Qe1
1 Qe2

2 · · ·Qer
r pe

for some exponents e1, . . . , er ≥ 0 and e ≥ 1.
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We claim it is possible to choose a natural number d ≤ X satisfying both of
the congruences

d ≡ 1 (mod 4), d ≡ −1 (mod Q1 · · ·Qr), (5)

as well as (
d

p

)
=

(
−1

p

)
. (6)

Suppose for the moment that this has been proved. Since d ≤ X and d is
coprime to Q1 · · ·Qrp, every prime dividing d is among the primes q1, . . . , qn−1.
So if we write d = d0d

2
1, where d0 is squarefree, then d0 | q1 · · · qn−1. Hence,(

d

1 + q1 · · · qn−1

)
=

(
1 + q1 · · · qn−1

d

)
=

(
1 + q1 · · · qn−1

d0

)(
1 + q1 · · · qn−1

d21

)
=

(
1

d0

)
·
((

1 + q1 · · · qn−1
d1

))2

= 1 · 1 = 1.

(The very first equality uses quadratic reciprocity for the Jacobi symbol.) On
the other hand, we have

(
d
Qi

)
=
(−1
Qi

)
for each i = 1, 2, . . . , r and

(
d
p

)
=
(−1

p

)
, so

that (
d

1 + q1 · · · qn−1

)
=

(
r∏

i=1

(
d

Qi

)ei
)
·
(
d

p

)e

=

(
r∏

i=1

(
−1

Qi

)ei
)
·
(
−1

p

)e

=

(
−1

1 + q1 · · · qn−1

)
= −1,

using in the last step that 1 + q1 · · · qn−1 = 1 + 2
∏

1<i<n qi ≡ 3 (mod 4). This
is a contradiction.

It remains to establish the existence of a d ≤ X satisfying (5) and (6).
The conditions (5) are satisfied by every integer d ≡ A (mod M), where A :=
2Q1 · · ·Qr−1 and M := 4Q1 · · ·Qr. To obtain (6), we look for a small nonnega-
tive integer k with

(
Mk+A

p

)
=
(−1

p

)
. Equivalently, fixing M ′ satisfying MM ′ ≡ 1

(mod p), we seek a nonnegative integer k with(
k + AM ′

p

)
=

(
−M ′

p

)
.

By the results of section 2, we can find such a k ≤ max{`′(�, p), `′(�, p)} < 2
√
p.

Then the corresponding d satisfies

0 < d = Mk + A < 2M
√
p + M < 3M

√
p ≤ 3M

√
X.

Since 3M = 12Q1 · · ·Qr =
√
X, we find that d < X. This completes the

proof.
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