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Expected Number of Dice Rolls for the Sum to Reach n

A classic probability result is that the expected number of random summands
chosen uniformly from the interval [0, 1] that are needed to sum to at least 1 is e.
This result is mainstream enough that it has appeared in general audience books
such as [4, p. 137] (a proof can be found in [3]). Here we consider a discrete
variation, namely, let X be the number of times an n-sided die has to be rolled
so that the sum of the rolls is at least n. Then

Theorem. The expected value of X is (1 + 1
n
)n−1.

Proof. Let’s start by calculating the probability that X > k. Note that the num-
ber of ways of picking x1, x2, . . . , xk from {1, 2, . . . , n} is nk. Using the stars
and bars method [2, p. 38], we can find that the number of ways such that
x1 + · · ·+ xk = m for m < n with 1 ≤ xi ≤ n for all i is
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the probability that X > k is
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The last equality is due to the Christmas stockings theorem that states∑n
i=r
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)
.

Therefore, the expected value of X is
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Remarks: Since limn→∞
(
1 + 1

n

)n
= e, then as n→∞, E[X]→ e.

Our result appears with a different proof in the unpublished online book [1].
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