Expected Number of Dice Rolls for the Sum to Reach n

A classic probability result is that the expected number of random summands chosen uniformly from the interval $[0,1]$ that are needed to sum to at least 1 is e. This result is mainstream enough that it has appeared in general audience books such as [4, p. 137] (a proof can be found in [3]). Here we consider a discrete variation, namely, let X be the number of times an n-sided die has to be rolled so that the sum of the rolls is at least n. Then

Theorem. The expected value of X is $\left(1+\frac{1}{n}\right)^{n-1}$.
Proof. Let's start by calculating the probability that $X>k$. Note that the number of ways of picking $x_{1}, x_{2}, \ldots, x_{k}$ from $\{1,2, \ldots, n\}$ is n^{k}. Using the stars and bars method [2, p. 38], we can find that the number of ways such that $x_{1}+\cdots+x_{k}=m$ for $m<n$ with $1 \leq x_{i} \leq n$ for all i is $\binom{m-1}{k-1}$. Therefore the probability that $X>k$ is

$$
\sum_{m=k}^{n-1} \frac{1}{n^{k}}\binom{m-1}{k-1}=\frac{1}{n^{k}} \sum_{\ell=k-1}^{n-2}\binom{\ell}{k-1}=\frac{1}{n^{k}}\binom{n-1}{k}
$$

The last equality is due to the Christmas stockings theorem that states $\sum_{i=r}^{n}\binom{i}{r}=\binom{n+1}{r+1}$.

Therefore, the expected value of X is

$$
\sum_{k=0}^{\infty} k \cdot \mathbb{P}(X=k)=\sum_{k=0}^{\infty} \mathbb{P}(X>k)=\sum_{k=0}^{n-1} \frac{1}{n^{k}}\binom{n-1}{k}=\left(1+\frac{1}{n}\right)^{n-1}
$$

Remarks: Since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$, then as $n \rightarrow \infty, \mathbb{E}[X] \rightarrow e$.
Our result appears with a different proof in the unpublished online book [1].

REFERENCES

1. Conroy, M. (2018). A collection of dice problems. www.madandmoonly.com/doctormatt/mathematics/dice1.pdf
2. Feller, W. (1950). An Introduction to Probability Theory and Its Applications. Vol. I. New York, NY: John Wiley \& Sons, Inc.
3. Russell, K. G. (1991). Estimating the value of e by simulation. The American Statistician 45(1): 66-68. doi.org/10.2307/2685243
4. Singh, S. (2013). The Simpsons and Their Mathematical Secrets. New York, NY: Bloomsbury Press.
—Submitted by Enrique Treviño, Lake Forest College
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX
MSC: Primary 60C05, Secondary 05A10; 05A15
