The Higher-dimensional Frobenius Problem Trinity REU 2005

Jeff Amos, Iuliana Pascu, Enrique Treviño, Yan Zhang under the direction of Professor Vadim Ponomarenko

[^0]
Original Problem

- If we have 6 - and 10 -unit coins, for what amount can we make change?
- What about 7 - and 10 - instead?

Quantity	\# Decomposition
54	$2 * 7+4 * 10$
55	$5 * 7+2 * 10$
56	$7 * 8$
57	$7+5 * 10$
\vdots	\vdots

Given positive integers $a_{1}, a_{2}, \ldots, a_{k}$ with gcd 1 , find the largest integer n such that n cannot be expressed in the form $c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{k} a_{k}$, where c_{i} are nonnegative integers.

The number n is called the Frobenius number $\operatorname{frob}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.

1. Example: $\operatorname{frob}(4,5)=11$.
2. $g c d=1$ is necessary: $\operatorname{frob}(6,8)$ does not exist.

Classical result:
Theorem 1 (Classical). Given positive integers a_{1} and a_{2} with gcd 1, we can express any integer $n>g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$ as $c_{1} a_{1}+c_{2} a_{2}$, where c_{i} are nonnegative integers.
$k=3$ should be easy right?
Theorem 2 (Fel 04). Fix $k=3$. Set $w=c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}$.
Then $g\left(a_{1}, a_{2}, a_{3}\right)$ equals

$$
\frac{1}{2}\left(w+\sqrt{w^{2}+4 a_{1} a_{2} a_{3}-4\left(c_{3} c_{2} a_{3} a_{2}+c_{3} c_{1} a_{3} a_{1}+c_{2} c_{1} a_{2} a_{1}\right)}\right)
$$

Theorem 3 (Curtis 90). There is no finite set of polynomials with complex coefficients for k variables, such that for each choice of a_{1}, a_{2}, a_{3}, there is some polynomial in this list which evaluates $\operatorname{frob}\left(a_{1}, a_{2}, a_{3}\right)$.
Theorem 4. Finding $\operatorname{frob}(S)$ is NP-hard for variable k.

Over a hundred papers have been written and still are being written for this problem.

Extension

We explore the vector analogue of the classical Frobenius problem.

Given a set of vectors $V=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\} \subset \mathbf{Z}^{r}$, consider $S\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right)$ to be the set $\left\{c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}} \mid c_{1}, \ldots, c_{k} \in \mathbf{N}_{0}\right\}$.

Problems with Getting Started

- How do we find a "maximal" vector?
- Do we have uniqueness for the "Frobenius vector"?
- Does one even exist?
- What about an analogue of gcd condition?

Cones and g-vectors

- What is a cone?
- Order by inclusion
- Complete points
- g-vectors

Density and Volume

- Density: we have "closely packed" points.
- Volume: the cone is k-dimensional

Density/volume condition

Theorem 5. S is dense iff $\operatorname{gcd}\left(\mathrm{v}_{\mathbf{1}}, \ldots, \mathrm{v}_{\mathbf{k}}\right)=1 . S=S_{\mathrm{N}_{0}}(V)$ is volume if and only if $\operatorname{gcd}(V) \neq \infty$.

GCD of vectors

$$
\begin{align*}
& \operatorname{gcd}((1,5),(1,2),(2,1)) \tag{1}\\
= & \operatorname{gcd}\left(\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
5 & 2
\end{array}\right), \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
5 & 1
\end{array}\right), \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right) \tag{2}\\
= & \operatorname{gcd}(-3,-9,-3) \tag{3}\\
= & 3 . \tag{4}
\end{align*}
$$

GCD of vectors (Part II)

Examples: $\operatorname{gcd}\{(1,5),(1,2),(1,1)\}=1$ and $\operatorname{gcd}\{(1,5),(1,2),(2,1)\}=$ 3:

$k=r+1$ case

In one dimension we have the following:
Old Theorem 1 (Classical). Given positive integers a_{1} and a_{2} with gcd 1, we can express any integer $n>g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-$ $a_{1}-a_{2}$ as $c_{1} a_{1}+c_{2} a_{2}$, where c_{i} are nonnegative integers.

With $r+1$ vectors in r dimensions we have:
Theorem 6 (REU 05). Suppose S is dense, and $S_{\mathbf{R}}$ is a simple cone generated by $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$. Let A be the $r \times r$ matrix with columns $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$. Then $g\left(v_{1}, \ldots, v_{r+1}\right)=\left\{|A| \mathbf{v}_{\mathbf{r}+\mathbf{1}}-\mathbf{v}_{\mathbf{1}}-\ldots-\right.$ $\left.\mathbf{v}_{\mathbf{r}+1}\right\}$

More Generalizations

In one dimension we have the following:
Old Theorem 2 (Roberts 56). Suppose that $\operatorname{gcd}(m, m+w, m+$ $2 w, \ldots, m+(k-1) w)=1$. Then $g(m, m+w, m+2 w, \ldots, m+(k-$ 1) $w)=m\left\lfloor\frac{m-2}{k-1}\right\rfloor+(m-1) w$.

In r dimensions we have the following:
Theorem 7 (REU 05). Let $V=\left\{\mathbf{v}_{\mathbf{i}}+j \mathbf{w} \mid 0 \leq r, 0 \leq j \leq\right.$ $k-1\}$. Suppose S is dense, and $S_{\mathbf{R}}$ is a simple cone generated by v_{1}, \ldots, v_{r}. Let A be the $r \times r$ matrix with columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{r}}$. Let $G=\left\{\left(c_{1}-1\right) \mathbf{v}_{\mathbf{1}}+\ldots+\left(c_{r}-1\right) \mathbf{v}_{\mathbf{r}}+(|A|-1) \mathbf{w} \mid c_{1}, \ldots, c_{r} \in \mathbf{N}_{0}\right.$ $\left.c_{1}+\ldots+c_{r}=\left\lfloor\frac{|A|-2}{k-1}\right\rfloor+1\right\}$. Now $g(V)=G$, and we get a meat grinder.

Characterizing Unique g-vectors

Theorem 8 (REU 05). Let g be a g-vector. Then g is the unique g-vector iff for all $i \in[1, r]$ there exists $\mathbf{w}_{\mathbf{i}}=\sum_{j=1}^{r} \alpha_{j} \mathbf{v}_{\mathbf{j}} \in \mathbf{Z}^{r}$ with $\alpha_{1}, \ldots, \alpha_{r} \in(0,1]$ and $\alpha_{i}=0$ such that for all $k \in \mathbf{Z}_{\geq 0}, \mathbf{g}+k\left(\mathbf{v}_{\mathbf{A}}-\right.$ $\left.\mathbf{v}_{\mathbf{i}}\right)+\mathbf{w}_{\mathbf{i}} \notin S$.

Huh?

New Stuff

Theorem 9 (Johnson 60). Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{a_{1}, d a_{2}, \ldots, d a_{k}\right.$
Then $d g(A)+(d-1) a_{1}=g(B)$.
Theorem 10. Let $V=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ and $W=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}, d \mathbf{v}_{\mathbf{r}+\mathbf{1}}, \ldots, d \mathbf{v}_{\mathbf{k}}\right\}$ where $d \in \mathbf{N}$. Then $d g(V)+(d-1) \mathbf{V}_{\mathbf{A}}=g(W)$.

Simplified Stuff I

For D, a finite subset of \mathbf{R}^{r}, we define $\operatorname{lub}(D)$ as a minimal vector greater than or equal to all vectors in D. Lemma 1. Let $D=\left\{\mathbf{d}_{\mathbf{1}}, \ldots, \mathbf{d}_{\mathbf{m}}\right\}$ where $\mathbf{d}_{\mathbf{i}} \in \mathbf{Z}^{r}$, and let $\mathbf{g} \in \mathbf{Z}^{r}$. Then $\operatorname{lub}(D)$ is unique, and can be computed as follows:

$$
\operatorname{lub}(D)=\sum_{i=1}^{r} \max _{j \in[1, m]}\left(P_{i}\left(\mathbf{d}_{\mathbf{j}}\right)\right) \mathbf{v}_{\mathbf{i}}
$$

Simplified Stuff II

Theorem 11. If $\mathrm{g} \in g(V)$ then there exist $\omega_{1}, \ldots, \omega_{|\mathbf{A}|} \in m(V)$, a complete set of co-set representatives, such that $\mathbf{g}+\mathbf{V}_{\mathbf{A}}=$ $\operatorname{lub}\left(\omega_{1}, \ldots, \omega_{|\mathbf{A}|}\right)$.

Schur Generalized

In one dimension we have the following:
Old Theorem 3 (Schur 35). If $a_{1} \leq a_{2} \leq \ldots \leq a_{k}$ then $g(S) \leq$ $a_{1} a_{k}-a_{1}-a_{k}$.

In r dimensions we have the following:
Theorem 12 (REU 05). If $\mathrm{g} \in g(V)$ then $\mathrm{g} \leq l u b\left((|A|-1) \mathrm{v}_{\mathbf{1}}, \ldots,(|A|-\right.$ 1) $\left.\mathrm{v}_{\mathrm{r}}\right)-\mathrm{V}_{\mathrm{A}}$.

Another Special Case

Theorem 13. Let $V=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{r}}, c_{1} \mathbf{w}, \ldots, c_{n} \mathbf{w}\right\}$ where $c_{1}, \ldots, c_{n} \in$ \mathbf{N} with $c_{1}, \ldots, c_{n},|A|$ relatively prime. Now we have $g(V)=$ $\left\{g\left(c_{1}, \ldots, c_{n},|A|\right) \mathbf{w}+|A| \mathbf{w}-\mathbf{V}_{\mathbf{A}}\right\}$ where g is the Frobenius function.

Notice that when $n=1$ we have

$$
\begin{aligned}
g(V) & =g\left(c_{1}, \ldots, c_{n},|A|\right) \mathbf{w}+|A| \mathbf{w}-\mathbf{V}_{\mathbf{A}} \\
& =\left(c_{1}|A|-c_{1}-|A|\right) \mathbf{w}+|A| \mathbf{w}-\mathbf{V}_{\mathbf{A}} \\
& =(|A|-1) c_{n} \mathbf{w}-\mathbf{V}_{\mathbf{A}}
\end{aligned}
$$

This is the formula we have for the case with $r+1$ vectors in r dimensions.

Constructing a Given g-set

The reverse problem: can we make a set of numbers the Frobenius vectors? If so, with how many vectors?

In $1-D$,

1. With 2 numbers we can get $a b-a-b$, which must be odd.
2. With 3 numbers we can get any number.

General Case

Lemma 2. Given a legal simple cone C and a set of h vectors $G=\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{\mathbf{h}}\right\} \subset R H$, there exists some set of vectors V with cone C such that $G \subset g(V)$ if:

1. Knowing that g_{i} has $R H$-coordinates $<g_{i 1}, \ldots, g_{i r}>$, we have $g_{i j} \geq-1$ for all (i, j);
2. for all i and a bounding hyperplane H of g_{i},

$$
(0, \ldots, 0) \cup\left(\bigcup_{j \neq i} \text { intcone }\left(\mathrm{g}_{\mathrm{j}}\right)\right) \not \supset\left(S_{L} \cap H \cap \operatorname{cone}\left(g_{i}\right) ;\right.
$$

Unique g-vectors in the Positive Orthant

Theorem 14. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbf{Z}^{r}$. There exists a vector set V of $r+1$ vectors with a simple cone and $g(V)=\{\mathbf{a}\}$ if and only if $a_{i} \equiv 1(\bmod 2)$ for some i.

When $r+2$ do not suffice

We have two weird theorems:
Theorem 15. Let $g=\left(g_{1}, \ldots, g_{r}\right), g_{i} \in \mathbf{Z}$. If k does not divide some g_{i}, then there exists $r+k$ vectors forming V such that $g(V)=\{g\}$.
Theorem 16. Let $g=\left(g_{1}, \ldots, g_{r}\right), g_{i} \in \mathbf{Z}$. There exists at most $3 r$ vectors forming V such that $g(V)=\{g\}$.

When gcd is not 1

As a natural generalization of our problem, it makes sense to consider the cases when $\operatorname{gcd}(V) \neq 1$.

We define $G(V)$, the generalized g-set as

$$
\left\{\min \left(a \in \operatorname{gcd}(V) R H \mid\left(\operatorname{intcone}(a) \cap S_{\mathbf{Z}}(V)\right) \subset S(V)\right)\right\}
$$

whatever.

$$
\left\{\min \left(a \in R H \mid\left(\operatorname{intcone}(a) \cap S_{L}\right) \subset S(V)\right\},\right.
$$

seems similar.

Furthermore, it is clear that when $\operatorname{gcd}(V)=1, g(V)=G(V)$.
Theorem 17. Suppose that $V=D V^{\prime}$, where $|D|=\operatorname{gcd}(V)$. Then $G(V)=D g\left(V^{\prime}\right)$.

Corollary 1. Suppose $r=1, V=\left\{a_{1}, \ldots, a_{n}\right\}$, and $\operatorname{gcd}(V)=k$. Then $G(V)=\left\{k \times \operatorname{frob}\left(V^{\prime}\right)\right\}$, where $V^{\prime}=\left\{a_{1} / k, \ldots, a_{n} / k\right\}$.

For example, when $V=\{10,14\}, S_{\mathbf{Z}}(V)=\{2 a, a \in \mathbf{Z}\}$. $\operatorname{frob}(V)=26$.

Future Directions

- bounding size of $g(V)$
- bounding cardinality of $g(V)$
- making a vector the unique g-vector with as few vectors as possible
- $g c d \neq 1$ case
- use general machinery to attack 1-dimensional case

Acknowledgments

- Professor Vadim Ponomarenko, our mentor
- Professor Scott Chapman, for leading the Trinity REU program
- NSF, for giving us money

[^0]: August 12, 2005

