The Higher-dimensional Frobenius Problem Trinity REU 2005

Jeff Amos, Iuliana Pascu, Enrique Treviño, Yan Zhang under the direction of Professor Vadim Ponomarenko

August 12, 2005

Original Problem

- If we have 6- and 10-unit coins, for what amount can we make change?
- What about 7- and 10- instead?

Quantity	# Decomposition
54	2 * 7 + 4 * 10
55	5 * 7 + 2 * 10
56	7 * 8
57	7 + 5 * 10
:	÷

Given positive integers a_1, a_2, \ldots, a_k with gcd 1, find the largest integer n such that n cannot be expressed in the form $c_1a_1 + c_2a_2 + \ldots + c_ka_k$, where c_i are nonnegative integers.

The number *n* is called the *Frobenius number* $frob(a_1, a_2, \ldots, a_k)$.

- 1. Example: frob(4,5) = 11.
- 2. gcd = 1 is necessary: frob(6, 8) does not exist.

Classical result:

Theorem 1 (Classical). Given positive integers a_1 and a_2 with gcd 1, we can express any integer $n > g(a_1, a_2) = a_1a_2 - a_1 - a_2$ as $c_1a_1 + c_2a_2$, where c_i are nonnegative integers.

k = 3 should be easy right? **Theorem 2** (Fel 04). Fix k = 3. Set $w = c_1a_1 + c_2a_2 + c_3a_3$. Then $g(a_1, a_2, a_3)$ equals

 $\frac{1}{2}(w + \sqrt{w^2 + 4a_1a_2a_3 - 4(c_3c_2a_3a_2 + c_3c_1a_3a_1 + c_2c_1a_2a_1)}).$

Theorem 3 (Curtis 90). There is no finite set of polynomials with complex coefficients for k variables, such that for each choice of a_1, a_2, a_3 , there is some polynomial in this list which evaluates $frob(a_1, a_2, a_3)$.

Theorem 4. Finding frob(S) is NP-hard for variable k.

Over a hundred papers have been written and still are being written for this problem.

Extension

We explore the vector analogue of the classical Frobenius problem.

Given a set of vectors $V = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subset \mathbf{Z}^r$, consider $S(\mathbf{v}_1, \dots, \mathbf{v}_k)$ to be the set $\{c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k | c_1, \dots, c_k \in \mathbf{N}_0\}$.

Problems with Getting Started

- How do we find a "maximal" vector?
- Do we have uniqueness for the "Frobenius vector"?
- Does one even exist?
- What about an analogue of gcd condition?

Cones and *g*-vectors

- What is a cone?
- Order by *inclusion*
- Complete points
- g-vectors

Density and Volume

- Density: we have "closely packed" points.
- Volume: the cone is *k*-dimensional

Density/volume condition

Theorem 5. S is dense iff $gcd(v_1, ..., v_k) = 1$. $S = S_{N_0}(V)$ is volume if and only if $gcd(V) \neq \infty$.

GCD of vectors

$$gcd((1,5),(1,2),(2,1))$$
 (1)

$$= \gcd(\det(\begin{smallmatrix} 1 & 1 \\ 5 & 2 \end{smallmatrix}), \det(\begin{smallmatrix} 1 & 2 \\ 5 & 1 \end{smallmatrix}), \det(\begin{smallmatrix} 1 & 2 \\ 2 & 1 \end{smallmatrix}))$$
(2)

$$= gcd(-3, -9, -3)$$
 (3)

$$= 3.$$
 (4)

GCD of vectors (Part II)

Examples: $gcd\{(1,5), (1,2), (1,1)\} = 1$ and $gcd\{(1,5), (1,2), (2,1)\} = 3$:

k = r + 1 case

In one dimension we have the following:

Old Theorem 1 (Classical). Given positive integers a_1 and a_2 with gcd 1, we can express any integer $n > g(a_1, a_2) = a_1a_2 - a_1 - a_2$ as $c_1a_1 + c_2a_2$, where c_i are nonnegative integers.

With r + 1 vectors in r dimensions we have:

Theorem 6 (REU 05). Suppose S is dense, and S_R is a simple cone generated by v_1, \ldots, v_r . Let A be the $r \times r$ matrix with columns v_1, \ldots, v_r . Then $g(v_1, \ldots, v_{r+1}) = \{|A|v_{r+1} - v_1 - \ldots - v_{r+1}\}$

More Generalizations

In one dimension we have the following:

Old Theorem 2 (Roberts 56). Suppose that gcd(m, m+w, m+2w, ..., m+(k-1)w) = 1. Then $g(m, m+w, m+2w, ..., m+(k-1)w) = m\lfloor \frac{m-2}{k-1} \rfloor + (m-1)w$.

In r dimensions we have the following:

Theorem 7 (REU 05). Let $V = \{\mathbf{v_i} + j\mathbf{w} \mid 0 \le r, 0 \le j \le k-1\}$. Suppose *S* is dense, and S_R is a simple cone generated by v_1, \ldots, v_r . Let *A* be the $r \times r$ matrix with columns $\mathbf{v_1}, \ldots, \mathbf{v_r}$. Let $G = \{(c_1 - 1)\mathbf{v_1} + \ldots + (c_r - 1)\mathbf{v_r} + (|A| - 1)\mathbf{w} \mid c_1, \ldots, c_r \in \mathbf{N_0} c_1 + \ldots + c_r = \left\lfloor \frac{|A| - 2}{k-1} \right\rfloor + 1\}$. Now g(V) = G, and we get a meat grinder.

Characterizing Unique g-vectors

Theorem 8 (REU 05). Let g be a g-vector. Then g is the unique g-vector iff for all $i \in [1, r]$ there exists $\mathbf{w}_{\mathbf{i}} = \sum_{j=1}^{r} \alpha_j \mathbf{v}_{\mathbf{j}} \in \mathbf{Z}^r$ with $\alpha_1, \ldots, \alpha_r \in (0, 1]$ and $\alpha_i = 0$ such that for all $k \in \mathbf{Z}_{\geq 0}$, $\mathbf{g} + k(\mathbf{v}_{\mathbf{A}} - \mathbf{v}_{\mathbf{i}}) + \mathbf{w}_{\mathbf{i}} \notin S$.

Huh?

New Stuff

Theorem 9 (Johnson 60). Let $A = \{a_1, \ldots, a_k\}$ and $B = \{a_1, da_2, \ldots, da_k\}$ Then $dg(A) + (d-1)a_1 = g(B)$. Theorem 10. Let $V = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ and $W = \{\mathbf{v}_1, \ldots, \mathbf{v}_r, d\mathbf{v}_{r+1}, \ldots, d\mathbf{v}_k\}$ where $d \in \mathbf{N}$. Then $dg(V) + (d-1)\mathbf{V}_A = g(W)$.

Simplified Stuff I

For D, a finite subset of \mathbf{R}^r , we define lub(D) as a minimal vector greater than or equal to all vectors in D.

Lemma 1. Let $D = \{d_1, ..., d_m\}$ where $d_i \in Z^r$, and let $g \in Z^r$. Then lub(D) is unique, and can be computed as follows:

$$lub(D) = \sum_{i=1}^{r} \max_{j \in [1,m]} (P_i(\mathbf{d_j})) \mathbf{v_i}$$

Simplified Stuff II

Theorem 11. If $g \in g(V)$ then there exist $\omega_1, \ldots, \omega_{|\mathbf{A}|} \in m(V)$, a complete set of co-set representatives, such that $g + V_{\mathbf{A}} = lub(\omega_1, \ldots, \omega_{|\mathbf{A}|})$.

Schur Generalized

In one dimension we have the following: Old Theorem 3 (Schur 35). If $a_1 \leq a_2 \leq \ldots \leq a_k$ then $g(S) \leq a_1a_k - a_1 - a_k$.

In r dimensions we have the following: **Theorem 12** (REU 05). If $g \in g(V)$ then $g \leq lub((|A|-1)v_1, ..., (|A|-1)v_r) - V_A$.

Another Special Case

Theorem 13. Let $V = \{\mathbf{v}_1, \dots, \mathbf{v}_r, c_1 \mathbf{w}, \dots, c_n \mathbf{w}\}$ where $c_1, \dots, c_n \in \mathbb{N}$ with $c_1, \dots, c_n, |A|$ relatively prime. Now we have $g(V) = \{g(c_1, \dots, c_n, |A|)\mathbf{w} + |A|\mathbf{w} - \mathbf{V}_A\}$ where g is the Frobenius function.

Notice that when n = 1 we have

$$g(V) = g(c_1, \dots, c_n, |A|)\mathbf{w} + |A|\mathbf{w} - \mathbf{V}_\mathbf{A}$$

= $(c_1|A| - c_1 - |A|)\mathbf{w} + |A|\mathbf{w} - \mathbf{V}_\mathbf{A}$
= $(|A| - 1)c_n\mathbf{w} - \mathbf{V}_\mathbf{A}$.

This is the formula we have for the case with r + 1 vectors in r dimensions.

Constructing a Given *g*-set

The reverse problem: can we make a set of numbers the Frobenius vectors? If so, with how many vectors?

In 1 - D,

- 1. With 2 numbers we can get ab a b, which must be odd.
- 2. With 3 numbers we can get any number.

General Case

Lemma 2. Given a legal simple cone C and a set of h vectors $G = \{g_1, \ldots, g_h\} \subset RH$, there exists some set of vectors V with cone C such that $G \subset g(V)$ if:

- 1. Knowing that g_i has RH-coordinates $\langle g_{i1}, \ldots, g_{ir} \rangle$, we have $g_{ij} \geq -1$ for all (i, j);
- 2. for all i and a bounding hyperplane H of g_i ,

$$(0,\ldots,0) \cup (\bigcup_{j \neq i} intcone(\mathbf{g}_j)) \not\supseteq (S_L \cap H \cap cone(g_i);$$

Unique *g*-vectors in the Positive Orthant

Theorem 14. Let $\mathbf{a} = (a_1, \ldots, a_r) \in \mathbf{Z}^r$. There exists a vector set V of r + 1 vectors with a simple cone and $g(V) = \{\mathbf{a}\}$ if and only if $a_i \equiv 1 \pmod{2}$ for some i.

When r + 2 do not suffice

We have two weird theorems:

Theorem 15. Let $g = (g_1, \ldots, g_r)$, $g_i \in \mathbb{Z}$. If k does not divide some g_i , then there exists r + k vectors forming V such that $g(V) = \{g\}$.

Theorem 16. Let $g = (g_1, \ldots, g_r)$, $g_i \in \mathbb{Z}$. There exists at most 3r vectors forming V such that $g(V) = \{g\}$.

When gcd is not 1

As a natural generalization of our problem, it makes sense to consider the cases when $gcd(V) \neq 1$.

We define G(V), the generalized g-set as

{min($a \in gcd(V)RH | (intcone(a) \cap S_{\mathbf{Z}}(V)) \subset S(V))$ },

whatever.

$$\{\min(a \in RH | (intcone(a) \cap S_L) \subset S(V)\},\$$

seems similar.

Furthermore, it is clear that when gcd(V) = 1, g(V) = G(V). **Theorem 17.** Suppose that V = DV', where |D| = gcd(V). Then G(V) = Dg(V'). **Corollary 1.** Suppose r = 1, $V = \{a_1, ..., a_n\}$, and gcd(V) = k. Then $G(V) = \{k \times frob(V')\}$, where $V' = \{a_1/k, ..., a_n/k\}$.

For example, when $V = \{10, 14\}, S_{\mathbb{Z}}(V) = \{2a, a \in \mathbb{Z}\}.$ frob(V) = 26.

Future Directions

- bounding size of g(V)
- bounding cardinality of g(V)
- making a vector the unique g-vector with as few vectors as possible
- $gcd \neq 1$ case
- use general machinery to attack 1-dimensional case

Acknowledgments

- Professor Vadim Ponomarenko, our mentor
- Professor Scott Chapman, for leading the Trinity REU program
- NSF, for giving us money