3.5 (2) a) \(f(10) = 10(50) = 500 \)
\(f(20) = 20(10) = 800 \)
\(f(45) = 45(15) = 675 \)

b)

![Graph](image)

c) It represents the # minutes and the # cases sold where the # cases is maximal.

d) \(f(x) = -x^2 + 60x \)

Vertex: \(h = \frac{-b}{2a} = \frac{-60}{2(1)} = 30 \).

\(k = f(30) = 30(30) = 900 \).

Greg should spend 30 minutes and he will sell 900 cases.

4) Maximum height is at the vertex.

Vertex: \(h = \frac{-b}{2a} = \frac{-1000}{2(-16)} = 31.25 \)

\(k = -16(31.25)^2 - 1000(31.25) = 15625 \).

The maximum height is 156.25 feet and it happens at time 31.25 seconds.
b) \(q^2 + 200 = -10q + 3200 \)
\(q^2 + 10q - 3000 = 0 \)
\[q = \frac{-10 \pm \sqrt{100 + 4(3000)}}{2} = \frac{-10 \pm \sqrt{12100}}{2} \]
\[q = 50 \]
\[p = (50)^2 + 200 = 2700 \]

So the equilibrium point is \((50, 2700)\).

c) The equilibrium quantity is 50.
The equilibrium price is 2700.

\[2q + 51 = \frac{3000}{q + 5} \]
\[(2q + 51)(q + 5) = 3000 \] (as long as \(q + 5 \))

\[2q^2 + 9q + 51q + 255 = 3000 \]
\[2q^2 + 52q - 2745 = 0 \]
\[q = \frac{-52 + \sqrt{(52)^2 - 4(2)(-2745)}}{2(2)} = 45 \]
\[q = 45 \]
\[p = 60 \] (\(p = 2q + 51 = 2(45) + 51 = 60 \))
16 \[R(x) = 300x - x^2 \]
\[C(x) = 65x + 7000 \quad 0 \leq x \leq 150 \]

Break-Even Analysis:
\[300x - x^2 = 65x + 7000 \]
\[x^2 - 235x + 7000 = 0 \]

\[x = \frac{235 \pm \sqrt{(235)^2 - 28000}}{2} \]

\[x_1 = \frac{235 + \sqrt{27925}}{2} = \frac{235 + 165}{2} = 200 \]

\[x_2 = \frac{235 - \sqrt{27925}}{2} = \frac{235 - 165}{2} = 35 \]

Since \(0 \leq x \leq 150 \), it breaks even at \(x = 35 \).

22 \(a) \) Price per week: \(p(x) = 1.4 - \ 0.2x \) (in dollars)

\(b) \) Weight per week: \(w(x) = 100 + 5x \) (in pounds)

\(c) \) Revenue per week wanted: \[R(x) = (1.4 - 0.2x)(100 + 5x) \]
\[= -0.1x^2 + 2x + 40 \]

\[R(x) = 40 - 0.1x^2 \] (in dollars)

\(d) \) Max of vertex. The vertex is \(h = \frac{-b}{2a} = \frac{-2}{2(-0.1)} = 0 \) and \(k = 40 - 0.1(0)^2 = 40 \).

So the farmer should pick the peaches **NOW**

\(e) \) The maximum revenue per tree is \$40. \)
3.6

2. \(y = 2x^6 \)

6. a) Yes
 b) Yes
 c) No (it has to be odd)
 d) Yes

12. \(x^4 + 4x^3 - 20 = f(x) \)

 should have shape

 That reduces the possibilities to (b), (f).
 \(f(0) = -20 \) so it can't be (b).

 Therefore the graph must be (f).

13. \(f(x) = x^2(x+2)(x-2) \)

 \(x \)-intercepts:
 \(x^2 = 0 \) so \(x = 0 \)
 \(x + 2 = 0 \) so \(x = -2 \)
 \(x - 2 = 0 \) so \(x = 2 \)

 goes through because \((x+2)\)

 Overall shape
 (even degree, positive leading coeff)

20. \(f(x) = x^3 + 2x^2 - 10 \)
 \(x = x(x^2 + 2x - 10) = x(x+\frac{\sqrt{144}}{2} - x) \)